Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A new luminescent Cu(I) tetrametallic metallacycle B is reported that features very rare semi-bridging aqua ligands. When heated markedly above room temperature, this compound undergoes a post-synthetic transformation in the solid-state, affording the new luminescent metallacycle C. Thermogravimetric analysis, IR spectroscopy and single-crystal X-ray diffraction reveal that this alteration preserves the gross tetrametallic macrocycle structure, but is caused by the release of the coordinated water molecules with the concomitant formation of cuprophilic interactions. This transition induces a shift from eye-perceived green (B) to blue (C) room-temperature luminescence for these molecular solids. Photophysical measurements and time-dependent density-functional theory calculations have been conducted to identify the origins of the emission properties lying in these structurally related assemblies, and suggest that thermally activated delayed fluorescence dominates the radiative relaxation pathways. This study highlights the innovative feature of Cu(I) derivatives, offering access to stimuli-sensitive materials that can witness, a posteriori, the exceeding of critical temperatures in their environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202413151DOI Listing

Publication Analysis

Top Keywords

luminescent cui
8
high-temperature solid-state
4
solid-state post-synthetic
4
post-synthetic modification
4
modification highly
4
luminescent
4
highly luminescent
4
cui metallacycles
4
metallacycles luminescent
4
luminescent thermic
4

Similar Publications

Stimuli-Responsive Luminescent Properties of Dinuclear Cu(I) Complexes Regulated by Hydrogen-Bonding Donors.

Inorg Chem

September 2025

Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.

The selection of hydrogen-bonding donors is crucial for the development of stimuli-responsive luminescent materials that rely on weak hydrogen-bonding interactions. In this study, we report two novel dinuclear Cu(I) complexes, [Cu(μ-η(,),η(,)-dpa)(μ-dppm)](ClO) () and [Cu(μ-η(,),η(,)-dpa)(μ-dppa)](ClO)·2CHCOCH (), which differ in their diphosphine linkers (CH in dppm vs NH in dppa). X-ray crystallography reveals weak CH···O hydrogen bonds between dppm-CH and perchlorate-O in and weak NH···O interactions between dppa-NH and acetone-O in .

View Article and Find Full Text PDF

Micro-Strain Responsive Near-Infrared Mechanoluminescence for Potential Nondestructive Artificial Joint Stress Imaging.

Adv Mater

September 2025

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.

View Article and Find Full Text PDF

Near-infrared (NIR) luminescent materials are pivotal for advanced optoelectronic and biomedical applications, yet attaining efficient emission in the NIR-II region (950-1400 nm) remains challenging. Here, we introduce a ligand cationization strategy for designing copper(i) iodide-organic hybrid materials that emit in the NIR-II region (920-1120 nm) with PLQYs up to 8.58%.

View Article and Find Full Text PDF

Bright Thermally Evaporated Red Perovskite Light-Emitting Diodes Enabled by In Situ Defect Passivation.

J Phys Chem Lett

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, Jiangsu, China.

Thermally evaporated perovskite light-emitting diodes (PeLEDs) hold great promise for high-quality display applications due to their exceptional large-area uniformity and ease of pixelation and integration. Beyond efficiency considerations, display technologies demanded exceptionally high luminance performance from LEDs. While the brightness of blue and green PeLEDs had progressed rapidly, the performance of red PeLEDs lagged significantly.

View Article and Find Full Text PDF

Stable Ultrabroad-Absorbing Radical Achieves Efficient NIR-II Photothermal Conversion via Facile Synthesis.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.

Inspired by the electron-withdrawing ability of nitroxide radicals, a novel open-shell material, EDOT-TPAO is reported, synthesized via one-step demethylation and oxidation of its closed-shell precursor, EDOT-TPAOMe. Time-dependent density functional theory calculations confirm an acceptor-donor-acceptor configuration of EDOT-TPAO where radical termini act as electron acceptors. This structural transformation narrows the optical bandgap from 2.

View Article and Find Full Text PDF