Regulation of maize root growth by local phosphorus availability, sucrose metabolism, and partitioning.

Ann Bot

College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, State Key Laboratory of Nutrient Use and Management (SKL-NUM), Ministry of Education, China Agricultural University, Beijing 100193, P. R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Understanding how maize roots proliferate in phosphorus (P)-rich soil patches is critical for improving nutrient acquisition and crop productivity. This study explores the mechanisms of root adaptation to heterogeneous P availability, focusing on sucrose metabolism and the role of local P signals.

Methods: A split-root system with chambers of differing Pi concentrations (0 and 500 μM) was used to examine maize root responses. Various physiological and biochemical parameters, including root growth, sucrose partitioning, enzyme activities, and gene expression, were measured to elucidate the underlying mechanisms.

Key Results: Root proliferation, particularly of second-order lateral roots, was markedly enhanced in P-rich patches. Sucrose was preferentially allocated to the Pi-supplied side, as confirmed by Fourier-transform infrared (FTIR) microscopy. Sucrose content in these roots decreased, indicating active metabolism. Higher activities of cell-wall invertase and sucrose synthase were observed in the Pi-supplied roots, supporting enhanced carbohydrate utilization.

Conclusions: Local P availability triggers significant adjustments in sucrose metabolism and allocation, enhancing the sink capacity of maize roots in P-rich patches. These changes facilitate efficient lateral root proliferation and Pi utilization, highlighting the critical role of local P signals in nutrient acquisition strategies. This research provides deeper insights into the adaptive responses of maize to heterogeneous P environments, offering potential strategies for improving crop nutrient efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcae169DOI Listing

Publication Analysis

Top Keywords

sucrose metabolism
12
maize root
8
root growth
8
maize roots
8
nutrient acquisition
8
role local
8
root proliferation
8
p-rich patches
8
sucrose
7
root
6

Similar Publications

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF

The fungicide jinggangmycin stimulates fecundity of Nilaparvata lugens Stål via ILP/Foxo signaling.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.

View Article and Find Full Text PDF

Understanding the kinetics of macrophage uptake and the metabolic fate of iron-carbohydrate complexes used for iron deficiency anemia treatment.

J Control Release

September 2025

Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland. Electronic address:

Iron-carbohydrate complexes (ICCs) are widely used nanomedicines to treat iron deficiency anemia, yet their intracellular fate and the mechanisms of action underlying their differences in treatment outcomes remain poorly understood. Here, we thus performed a comprehensive dynamic characterization of two structurally distinct ICCs - iron sucrose (IS) and ferric carboxymaltose (FCM) - in primary human macrophages, key cells to the iron metabolism. By employing innovative correlative microscopy techniques, elemental analysis, and in vitro pharmacokinetic profiling, we demonstrate that the uptake, intracellular trafficking, and biodegradation of ICCs depend on their physicochemical properties.

View Article and Find Full Text PDF

Iron oxide-mediated enhancement of extracellular electron transfer and symbiosis in consortium of electroactive bacteria and microalgae for wastewater treatment.

Water Res

August 2025

College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

This study explores the role of α-Fe₂O₃ in improving extracellular electron transfer (EET) and symbiotic interactions between electroactive Shewanella oneidensis MR-1, its gene-deficient mutants (ΔmtrC, ΔomcA, and ΔcymA), and microalgae (Chlorella vulgaris). The iron oxide facilitates the efficient transfer of electrons generated by MR-1 to microalgal photosystem via the pathway of CymA-MtrC-OmcA to α-Fe₂O₃. This process enhances the removals of TOC, TN, and NH₄⁺-N in the MR-1 bacterial-algal consortium by 9.

View Article and Find Full Text PDF

Insights into gut microbiota and metabolite profiles during in vitro fermentation of Volvaria volvacea polysaccharides: unraveling the central role of Bacteroides thetaiotaomicron.

Food Chem

September 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China. Ele

Volvaria volvacea polysaccharides (VVP) possess diverse bioactivities with promising applications in biomedicine and functional foods. This study investigated the metabolic fate of VVP in human gut microbiota and uncovered the pivotal role of Bacteroides thetaiotaomicron using in vitro fecal fermentation models. VVP selectively promoted B.

View Article and Find Full Text PDF