Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrophage polarization and inflammation may play an important role in the development of sepsis. T-cell immunoglobulin mucin 1 (TIM1) has been demonstrated to promote macrophage inflammatory responses. However, whether TIM1 regulates macrophage polarization and inflammation to affect sepsis development remains unclear. Human monocytic leukemia cell line was induced into macrophages, followed by stimulated with LPS and IL-4 to induce M1 polarization and M2 polarization. The expression levels of TIM1, methyltransferase 3 (METTL3), and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) were examined by qRT-PCR and western blot. IL-6, IL-1β, and TNF-α levels were tested by ELISA. CD86cell rate was analyzed by flow cytometry. The mA methylation level of TIM1 was assessed by MeRIP assay. The interaction of between TIM1 and METTL3 or IGF2BP2 was assessed by dual-luciferase reporter assay and RIP assay. TIM1 knockdown repressed LPS-induced macrophage M1 polarization and inflammation. In terms of mechanism, METTL3 promoted TIM1 expression through mA modification, and this modification could be recognized by IGF2BP2. Besides, knockdown of METTL3/IGF2BP2 suppressed LPS-induced macrophage M1 polarization and inflammation, while this effect could be eliminated by TIM1 overexpression. METTL3/IGF2BP2/TIM1 axis promoted macrophage M1 polarization and inflammation, which might provide potential target for sepsis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23845DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
24
polarization inflammation
24
polarization
8
tim1
8
lps-induced macrophage
8
macrophage
7
inflammation
6
mettl3-mediated tim1
4
tim1 promotes
4
promotes macrophage
4

Similar Publications

The effect of CD40 agonist antibody therapy on the pancreatic cancer microenvironment.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.

The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).

View Article and Find Full Text PDF

This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF