Self-enhanced PTX@HSA-HA loaded functionalized injectable hydrogel for effective local chemo-photothermal therapy in breast cancer.

Carbohydr Polym

Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of New Sustained and Controlled Release Formulations and

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer is a malignant tumor that poses a significant threat to women's health and single therapy fails to play a good oncological therapeutic effect. Synergistic treatment with multiple strategies may make up for the deficiencies and has gained widespread attention. In this study, sulfhydryl-modified hyaluronic acid (HA-SH) was covalently crosslinked with polydopamine (PDA) via a Michael addition reaction to develop an injectable hydrogel, in which PDA can be used not only as a matrix but also as a photothermal agent. After HSA and paclitaxel were spontaneously organized into nanoparticles via hydrophobic interaction, hyaluronic acid with low molecular weight was covalently linked to HSA, thus conferring effectively delivery. This photothermal injectable hydrogel incorporates PTX@HSA-HA nanoparticles, thereby initiating a thermochemotherapeutic response to target malignancy. Our results demonstrated that this injectable hydrogel possesses consistent drug delivery capability in a murine breast cancer model, collaborating with photothermal therapy to effectively suppress tumor growth, represented by low expression of Ki-67 and increasing apoptosis. Photothermal therapy (PTT) can effectively stimulate immune response by increasing IL-6 and TNF-α. Notably, the treatment did not elicit any indications of toxicity. This injectable hydrogel holds significant promise as a multifaceted therapeutic agent that integrates photothermal and chemotherapeutic modalities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2024.122569DOI Listing

Publication Analysis

Top Keywords

injectable hydrogel
20
breast cancer
12
hyaluronic acid
8
photothermal therapy
8
injectable
5
hydrogel
5
photothermal
5
self-enhanced ptx@hsa-ha
4
ptx@hsa-ha loaded
4
loaded functionalized
4

Similar Publications

Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.

View Article and Find Full Text PDF

Injectable and tissue adhesive chrysomycin A-laden chitosan hydrogel depot for MRSA-infected wound healing and tumor recurrence prevention.

Int J Biol Macromol

September 2025

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China. Electronic address:

Tumor surgery often leads to tumor residue, tissue defects, and drug-resistant bacterial infections, resulting in high recurrence rates and chronic wounds. In this study, an injectable hydrogel was synthesized using glycidyl trimethyl ammonium chloride-chitosan (GCh) and formylbenzoic acid-modified chrysomycin A (CA)-loaded F127 micelles (F127FA-CA). The formation of the hydrogel is achieved through Schiff base conjugation, which occurs between the amino groups present in GCh and the aldehyde groups located on the micelle surfaces.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).

View Article and Find Full Text PDF

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF