Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Triptophenolide, a major diterpenoid extracted from Hook. f., has been reported to possess significant anti-tumour, anti-androgen and anti-inflammatory activities. However, the metabolic fate of triptophenolide remains unknown. Therefore, this study focused on the metabolic profiling of triptophenolide in rat plasma, urine, bile and faeces following intragastric administration. An ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with combination of extracted ion chromatogram strategy based on 71 typical metabolic reactions was established to comprehensively profile the metabolites of triptophenolide. This strategy allowed for the identification of 17 metabolites from the biosamples. Reduction, oxidation, glucuronide conjugation, and hydroxylation were considered as its main metabolic pathways . The present study will be greatly helpful for the further pharmacological studies on triptophenolide and would provide valuable information for its clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2024.2395496DOI Listing

Publication Analysis

Top Keywords

metabolic profiling
8
profiling triptophenolide
8
triptophenolide rat
8
rat plasma
8
plasma urine
8
urine bile
8
bile faeces
8
faeces intragastric
8
intragastric administration
8
triptophenolide
6

Similar Publications

Simulated metabolic profiles reveal biases in pathway analysis methods.

Metabolomics

September 2025

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.

View Article and Find Full Text PDF

Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF

The essential cofactor coenzyme A (CoASH) and its thioester derivatives (acyl-CoAs) have pivotal roles in cellular metabolism. However, the mechanism by which different acyl-CoAs are accurately partitioned into different subcellular compartments to support site-specific reactions, and the physiological impact of such compartmentalization, remain poorly understood. Here, we report an optimized liquid chromatography-mass spectrometry-based pan-chain acyl-CoA extraction and profiling method that enables a robust detection of 33 cellular and 23 mitochondrial acyl-CoAs from cultured human cells.

View Article and Find Full Text PDF