Background: The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes.
View Article and Find Full Text PDFAs terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity.
View Article and Find Full Text PDFPLoS Comput Biol
February 2024
Metabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in complex samples like blood or urine for human health studies. While biomarker-based assessment often relies on a single molecule, metabolic profiling combines several metabolites to create a more complex and more specific fingerprint of the disease. However, in contrast to genomics, there is no unique metabolomics setup able to measure the entire metabolome.
View Article and Find Full Text PDFAs terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity.
View Article and Find Full Text PDFSpectral similarity networks, also known as molecular networks, are crucial in non-targeted metabolomics to aid identification of unknowns aiming to establish a potential structural relation between different metabolite features. However, too extensive differences in compound structures can lead to separate clusters, complicating annotation. To address this challenge, we developed an automated Annotation Propagation through multiple EXperimental Networks (APEX) workflow, which integrates spectral similarity networks with mass difference networks and homologous series.
View Article and Find Full Text PDFIn human health research, metabolic signatures extracted from metabolomics data have a strong added value for stratifying patients and identifying biomarkers. Nevertheless, one of the main challenges is to interpret and relate these lists of discriminant metabolites to pathological mechanisms. This task requires experts to combine their knowledge with information extracted from databases and the scientific literature.
View Article and Find Full Text PDFEnviron Sci Technol
October 2022
Front Mol Biosci
March 2022
Both targeted and untargeted mass spectrometry-based metabolomics approaches are used to understand the metabolic processes taking place in various organisms, from prokaryotes, plants, fungi to animals and humans. Untargeted approaches allow to detect as many metabolites as possible at once, identify unexpected metabolic changes, and characterize novel metabolites in biological samples. However, the identification of metabolites and the biological interpretation of such large and complex datasets remain challenging.
View Article and Find Full Text PDFPLoS Comput Biol
September 2021
Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention.
View Article and Find Full Text PDFMotivation: Metabolomics studies aim at reporting a metabolic signature (list of metabolites) related to a particular experimental condition. These signatures are instrumental in the identification of biomarkers or classification of individuals, however their biological and physiological interpretation remains a challenge. To support this task, we introduce FORUM: a Knowledge Graph (KG) providing a semantic representation of relations between chemicals and biomedical concepts, built from a federation of life science databases and scientific literature repositories.
View Article and Find Full Text PDFClin Exp Allergy
September 2021
Background: Biomedical research increasingly relies on computational approaches to extract relevant information from large corpora of publications.
Objective: To investigate the consequence of the ambiguity between the use of terms "Eczema" and "Atopic Dermatitis" (AD) from the Information Retrieval perspective, and its impact on meta-analyses, systematic reviews and text mining.
Methods: Articles were retrieved by querying the PubMed using terms 'eczema' (D003876) and "dermatitis, atopic" (D004485).
Background: The relationship between allergic sensitisation and asthma is complex; the data about the strength of this association are conflicting. We propose that the discrepancies arise in part because allergic sensitisation may not be a single entity (as considered conventionally) but a collection of several different classes of sensitisation. We hypothesise that pairings between immunoglobulin E (IgE) antibodies to individual allergenic molecules (components), rather than IgE responses to 'informative' molecules, are associated with increased risk of asthma.
View Article and Find Full Text PDFBeing able to explore the metabolism of broad metabolizing cells is of critical importance in many research fields. This article presents an original modeling solution combining metabolic network and omics data to identify modulated metabolic pathways and changes in metabolic functions occurring during differentiation of a human hepatic cell line (HepaRG). Our results confirm the activation of hepato-specific functionalities and newly evidence modulation of other metabolic pathways, which could not be evidenced from transcriptomic data alone.
View Article and Find Full Text PDFFront Pediatr
September 2018
Advances in big data analytics have created an opportunity for a step change in unraveling mechanisms underlying the development of complex diseases such as asthma, providing valuable insights that drive better diagnostic decision-making in clinical practice, and opening up paths to individualized treatment plans. However, translating findings from data-driven analyses into meaningful insights and actionable solutions requires approaches and tools which move beyond mining and patterning longitudinal data. The purpose of this review is to summarize recent advances in phenotyping of asthma, to discuss key hurdles currently hampering the translation of phenotypic variation into mechanistic insights and clinical setting, and to suggest potential solutions that may address these limitations and accelerate moving discoveries into practice.
View Article and Find Full Text PDFThe use of mass spectrometry-based metabolomics to study human, plant and microbial biochemistry and their interactions with the environment largely depends on the ability to annotate metabolite structures by matching mass spectral features of the measured metabolites to curated spectra of reference standards. While reference databases for metabolomics now provide information for hundreds of thousands of compounds, barely 5% of these known small molecules have experimental data from pure standards. Remarkably, it is still unknown how well existing mass spectral libraries cover the biochemical landscape of prokaryotic and eukaryotic organisms.
View Article and Find Full Text PDFMotivation: Metabolomics has shown great potential to improve the understanding of complex diseases, potentially leading to therapeutic target identification. However, no single analytical method allows monitoring all metabolites in a sample, resulting in incomplete metabolic fingerprints. This incompleteness constitutes a stumbling block to interpretation, raising the need for methods that can enrich those fingerprints.
View Article and Find Full Text PDFChemical pollutant exposure is a risk factor contributing to the growing epidemic of non-alcoholic fatty liver disease (NAFLD) affecting human populations that consume a western diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. Here, we describe the alterations in gene expression profiles and metabolite levels in the human HepaRG liver cell line, a validated model for cellular steatosis, exposed to the polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can induce NAFLD.
View Article and Find Full Text PDFNucleic Acids Res
July 2018
Metabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not sufficiently advanced computer skills since it requires the use of various tools and web servers.
View Article and Find Full Text PDFJ Inherit Metab Dis
May 2018
Background: In 2009, untargeted metabolomics led to the delineation of a new clinico-biological entity called cerebellar ataxia with elevated cerebrospinal free sialic acid, or CAFSA. In order to elucidate CAFSA, we applied sequentially targeted and untargeted omic approaches.
Methods And Results: First, we studied five of the six CAFSA patients initially described.
Bioinformatics
January 2018
Summary: MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyse omics data in a biochemical context.
Availability And Implementation: Documentation and link to GIT code repository (GPL 3.
This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database.
View Article and Find Full Text PDFBrief Bioinform
January 2017
Untargeted metabolomics makes it possible to identify compounds that undergo significant changes in concentration in different experimental conditions. The resulting metabolomic profile characterizes the perturbation concerned, but does not explain the underlying biochemical mechanisms. Bioinformatics methods make it possible to interpret results in light of the whole metabolism.
View Article and Find Full Text PDF