Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754433PMC
http://dx.doi.org/10.3389/fmolb.2016.00002DOI Listing

Publication Analysis

Top Keywords

metabolic networks
24
genome scale
8
scale metabolic
8
metabolic
7
networks
7
libraries
5
computational solution
4
solution automatically
4
automatically map
4
map metabolite
4

Similar Publications

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Background: The lncRNA-miRNA-mRNA regulatory network is recognized for its significant role in cardiovascular diseases, yet its involvement in in-stent restenosis (ISR) remains unexplored. Our study aimed to investigate how this regulatory network influences ISR occurrence and development by modulating inflammation and immunity.

Methods: By utilizing data extracted from the Gene Expression Omnibus (GEO) database, we constructed the lncRNA-miRNA-mRNA regulatory network specific to ISR.

View Article and Find Full Text PDF

Cytokine pathways driving diverse tissue pathologies in rheumatoid arthritis.

Arthritis Rheumatol

September 2025

College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.

Rheumatoid arthritis is a complex systemic disorder characterised primarily by articular inflammation and destruction with associated functional loss and reduced quality of life. RA is also associated with extra-articular disease e.g.

View Article and Find Full Text PDF