Publications by authors named "Pablo Rodriguez-Mier"

Summary: We present NetworkCommons, a platform for integrating prior knowledge, omics data, and network inference methods, facilitating their usage and evaluation. NetworkCommons aims to be an infrastructure for the network biology community that supports the development of better methods and benchmarks, by enhancing interoperability and integration.

Availability And Implementation: NetworkCommons is implemented in Python and offers programmatic access to multiple omics datasets, network inference methods, and benchmarking setups.

View Article and Find Full Text PDF

The growing availability of single-cell and spatially resolved transcriptomics has led to the development of many approaches to infer cell-cell communication, each capturing only a partial view of the complex landscape of intercellular signalling. Here we present LIANA+, a scalable framework built around a rich knowledge base to decode coordinated inter- and intracellular signalling events from single- and multi-condition datasets in both single-cell and spatially resolved data. By extending and unifying established methodologies, LIANA+ provides a comprehensive set of synergistic components to study cell-cell communication via diverse molecular mediators, including those measured in multi-omics data.

View Article and Find Full Text PDF

Correlation is not causation: this simple and uncontroversial statement has far-reaching implications. Defining and applying causality in biomedical research has posed significant challenges to the scientific community. In this perspective, we attempt to connect the partly disparate fields of systems biology, causal reasoning, and machine learning to inform future approaches in the field of systems biology and molecular medicine.

View Article and Find Full Text PDF

Metabolic profiling (metabolomics) aims at measuring small molecules (metabolites) in complex samples like blood or urine for human health studies. While biomarker-based assessment often relies on a single molecule, metabolic profiling combines several metabolites to create a more complex and more specific fingerprint of the disease. However, in contrast to genomics, there is no unique metabolomics setup able to measure the entire metabolome.

View Article and Find Full Text PDF

In human health research, metabolic signatures extracted from metabolomics data have a strong added value for stratifying patients and identifying biomarkers. Nevertheless, one of the main challenges is to interpret and relate these lists of discriminant metabolites to pathological mechanisms. This task requires experts to combine their knowledge with information extracted from databases and the scientific literature.

View Article and Find Full Text PDF

Background And Objectives: Epidemiological models of epidemic spread are an essential tool for optimizing decision-making. The current literature is very extensive and covers a wide variety of deterministic and stochastic models. However, with the increase in computing resources, new, more general, and flexible procedures based on simulation models can assess the effectiveness of measures and quantify the current state of the epidemic.

View Article and Find Full Text PDF

Over-representation analysis (ORA) is one of the commonest pathway analysis approaches used for the functional interpretation of metabolomics datasets. Despite the widespread use of ORA in metabolomics, the community lacks guidelines detailing its best-practice use. Many factors have a pronounced impact on the results, but to date their effects have received little systematic attention.

View Article and Find Full Text PDF

The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints.

View Article and Find Full Text PDF