Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traumatic spinal cord injury (SCI) always leads to severe neurological deficits and permanent damage. Neuroinflammation is a vital process of SCI and have become a promising target for SCI treatment. However, the neuroinflammation-targeted therapy would hinder the functional recovery of spinal cord and lead to the treatment failure. Herein, a biomimic anti-neuroinflammatory nanoplatform (DHCNPs) was developed for active neutrophil extracellular traps (NETs) targeting and SCI treatment. The curcumin-loaded liposome with the anti-inflammatory property acted as the core of the DHCNPs. Platelet membrane and neutrophil membrane were fused to form the biomimic hybrid membrane of the DHCNPs for hijacking neutrophils and neutralizing the elevated neutrophil-related proinflammatory cytokines, respectively. DNAse I modification on the hybrid membrane could achieve NETs degradation, blood spinal cord barrier, and neuron repair. Further studies proved that the DHCNPs could reprogram the multifaceted neuroinflammation and reverse the SCI process via nuclear factor kappa-B (NF-κB) pathway. We believe that the current study provides a new perspective for neuroinflammation inhibition and may shed new light on the treatment of SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364920PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101218DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
biomimic anti-neuroinflammatory
8
anti-neuroinflammatory nanoplatform
8
active neutrophil
8
neutrophil extracellular
8
extracellular traps
8
cord injury
8
sci treatment
8
hybrid membrane
8
sci
6

Similar Publications

Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.

Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.

View Article and Find Full Text PDF

The aim of this case study is to illustrate the benefits of clean intermittent self-catheterisation (CISC) in individuals with multiple sclerosis (MS) who have incomplete bladder emptying. People with MS usually start to experience bladder symptoms 6-8 years after diagnosis, although some individuals experience symptoms from the time of diagnosis. MS is a condition of the central nervous system that affects the brain and spinal cord; the immune system attacks myelin, a substance that protects the nerve fibres, preventing messages travelling smoothly along the fibres to control the whole body, which includes the nerves that control the bladder.

View Article and Find Full Text PDF

Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.

View Article and Find Full Text PDF

Background And Purpose: Socioeconomic determinants of health impact childhood development and adult health outcomes. One key aspect is the physical environment and neighborhood where children live and grow. Emerging evidence suggests that neighborhood deprivation, often measured by the Area Deprivation Index (ADI), may influence neurodevelopment, but longitudinal and multimodal neuroimaging analyses remain limited.

View Article and Find Full Text PDF

This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.

View Article and Find Full Text PDF