98%
921
2 minutes
20
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap / measurements to greater than 100,000 /. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow / selection windows followed by ECCR, multiple glycoform / values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363329 | PMC |
http://dx.doi.org/10.1021/acscentsci.4c00461 | DOI Listing |
J Phys Chem Lett
September 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.
View Article and Find Full Text PDFSci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
The oxygen evolution reaction (OER) in conventional zinc-air batteries (ZABs) involves a complex multielectron transfer process, leading to slow reaction kinetics, high charging voltage, and low energy efficiency. To address these limitations, a zinc-ethanol/air battery (ZEAB) system that strategically replaces the OER with the ethanol oxidation reaction (EOR) possessing a lower thermodynamic potential has been proposed. Herein, a bimetallic catalyst CuCo-embedded nitrogen-doped carbon (CuCo-20%-1), derived from a Cu/Co/Cd co-coordinated metal-organic precursor, is synthesized and exhibits an excellent performance for both EOR and ORR.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia. Electronic address:
Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.
View Article and Find Full Text PDF