98%
921
2 minutes
20
The present study aimed to investigate the effect of digested total protein (DTP) from chia seed on the gut microbiota and morphology of mice fed with a high-fat diet. Forty-four male C57BL/6 mice were divided into 4 groups: AIN (standard diet), HF (high-fat diet), AIN + DTP (standard diet supplemented with 400 mg of digested chia seed protein), and HF + DTP (high-fat diet supplemented with 400 mg of digested chia seed protein) during 8 weeks. Colon morphology, tight junction's gene expression, and gut microbiota composition were evaluated. The consumption of digested chia seed protein (DTP) increased the crypts width, longitudinal and circular muscular layer. Furthermore, the AIN + DTP group enhanced the expression of tight junction proteins, including occludin and claudin, while the AIN + DTP and HF + DTP groups increase the zonula occludens expression. The α-diversity analysis showed a reduction in bacterial dominance in the HF + DTP group. All the experimental groups were grouped in different cluster, showing differences in the microbiota community in the β-diversity analyzes. The Firmicutes/Bacteroidetes ratio did not differ among the groups. The genera and were increased in the AIN + DTP group, but the _unclassified was increased in the HF + DTP group. The was increased, while the and were decreased in the AIN + DTP and HF + DTP groups. Then, the consumption of DTP from chia seed improved the gut microbiota composition and mucosal integrity, counteracting the adverse effects of high-fat diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fo02199a | DOI Listing |
Food Chem
September 2025
Department of Medical Science, Mahidol University, Amnatcharoen Campus, Amnat Charoen, 37000, Thailand; Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. Electronic address:
This study utilized the synergistic effectiveness of chia seed mucilage and iron (III)-natural phenolic nanoparticles as biosorbents for the first time in the dispersive solid-phase extraction (DSPE) of oxytetracycline, tetracycline, chlortetracycline, and doxycycline followed by HPLC-UV quantification. An in-situ iron (III)-natural phenolic solid adsorbent was created using natural phenolics found in the copper pod tree bark. An ultrasonic-assisted extraction was performed to enhance the extraction efficiency of DSPE-based biosorbents.
View Article and Find Full Text PDFRSC Adv
August 2025
Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
This study developed a lysozyme-dequalinium chloride-loaded Zn-Fe layered double hydroxide (LDH)-chia seed mucilage matrix for enhanced antimicrobial efficacy and sustained drug delivery. The optimized formulation (15% w/v Zn-Fe LDH-chia seed hybrid) achieved encapsulation efficiencies of 93.30 ± 1.
View Article and Find Full Text PDFGels
August 2025
Tecnológico Nacional de México/TES de San Felipe del Progreso, San Felipe del Progreso 50640, Mexico.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia-alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.
View Article and Find Full Text PDFMol Cell Endocrinol
August 2025
Laboratorio de Estudio de Enfermedades Metabólicas Relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina. Electronic address: medaless@f
Metabolic dysfunction-associated steatotic liver disease (MASLD) is recognized as the hepatic manifestation of Metabolic Syndrome. The aim of this work was to evaluate the effects of chia seed, rich in α-linolenic acid, on glucose tolerance, enzyme activities and transcription factors involved in gluconeogenesis, and key molecules in insulin signaling in sucrose-rich diet (SRD) fed rats. Male Wistar rats were fed a reference diet (RD) for 6 months or a SRD for 3 months.
View Article and Find Full Text PDFFood Chem X
July 2025
Department of Food Technology Research Science, Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Tehran, Iran.
This study aimed to encapsulate bioactive peptides derived from Sargassum angustifolium protein isolate within calcium alginate and chia seed gum matrices using freeze-drying. The encapsulated microbeads and microcapsules were evaluated based on encapsulation efficiency (EE), surface charge (zeta potential), microstructure, chemical composition, and thermal properties. Results indicated that Alg-SAPH exhibited a higher EE compared to CSG-SAPH.
View Article and Find Full Text PDF