Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cutaneous metastases (CMs) are a manifestation of advanced cancer and can be treated with oncolytic immunotherapy. Laboratory studies suggest radiotherapy (RT) may facilitate response to immunotherapy. We hypothesized that oncolytic immunotherapy with talimogene lapherparepvec (T-VEC, an oncolytic immunotherapy that expresses granulocyte-macrophage colony stimulating factor) and RT would produce response in non-targeted metastases.

Methods: A randomized phase 2 trial of T-VEC+/-RT was conducted. Eligible patients had ≥1 CM from a solid tumor amenable to T-VEC and RT and another measurable metastasis. Tumor and overall response was assessed using modified World Health Organization (mWHO) criteria. Adverse events (AEs) and quality of life (QOL) were characterized using CTCAE v4.0 and Skindex-16, respectively. Correlative analyses of tumor genomics and the immune system were performed.

Results: 19 patients were randomized to receive T-VEC (n = 9) or T-VEC+RT (n = 10). One patient in each arm demonstrated complete response in the largest non-targeted metastasis. The trial was closed after the first stage of enrollment because of no overall mWHO responses, slow accrual and the COVID-19 pandemic. AEs were consistent with prior reports of T-VEC. Skin related QOL was poor before and after treatment. Median progression free survival was 1.2 and 2.5 months in the T-VEC and T-VEC+RT arms; median overall survival was 4.9 and 17.3 months in the T-VEC and T-VEC+RT arms. Analyses of peripheral blood cells and cytokines demonstrated responders exhibited several outlying lymphocyte and cytokine parameters.

Conclusions: Low overall response rate, slow accrual, and the COVID-19 pandemic led to closure of this trial. Responses in non-injected and non-irradiated metastases were infrequent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438562PMC
http://dx.doi.org/10.1016/j.radonc.2024.110478DOI Listing

Publication Analysis

Top Keywords

oncolytic immunotherapy
16
cutaneous metastases
8
slow accrual
8
accrual covid-19
8
covid-19 pandemic
8
t-vec t-vec+rt
8
t-vec+rt arms
8
t-vec
6
immunotherapy
5
response
5

Similar Publications

Viral warfare: unleashing engineered oncolytic viruses to outsmart cancer's defenses.

Front Immunol

September 2025

Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.

Oncolytic virotherapy (OVT) has emerged as a promising and innovative cancer treatment strategy that harnesses engineered viruses to selectively infect, replicate within, and destroys malignant cells while sparing healthy tissues. Beyond direct oncolysis, oncolytic viruses (OVs) exploit tumor-specific metabolic, antiviral, and immunological vulnerabilities to reshape the tumor microenvironment (TME) and initiate systemic antitumor immunity. Despite promising results from preclinical and clinical studies, several barriers, including inefficient intratumoral virus delivery, immune clearance, and tumor heterogeneity, continue to limit the therapeutic advantages of OVT as a standalone modality and hindered its clinical success.

View Article and Find Full Text PDF

IRF7 drives resistance to oncolytic virotherapy by restricting viral replication and suppressing antitumor immunity.

Biochem Biophys Res Commun

September 2025

State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China. Electronic address:

Oncolytic viruses (OVs) represent a promising approach for cancer immunotherapy by inducing direct tumor lysis and stimulating antitumor immunity. However, tumor-intrinsic resistance remains a major barrier to their efficacy. In this study, we established an OV-resistant MC38 colon cancer model (MC38) and identified interferon regulatory factor 7 (IRF7), a key regulator of type I interferon signaling, as significantly upregulated in resistant cells.

View Article and Find Full Text PDF

Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.

View Article and Find Full Text PDF

IFNα2b in combination with oncolytic adenovirus enhances antitumor activity against melanoma.

Int Immunopharmacol

September 2025

The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Melanoma is an aggressive malignancy originating from melanocytes, marked by its high metastatic potential, severe malignancy, and poor prognosis. The primary clinical approach involves surgical resection, complemented by adjuvant therapies such as radiotherapy, chemotherapy, targeted therapies, and immunotherapies. In recent years, high-dose IFNα2b has emerged as a pivotal adjuvant therapy following surgery.

View Article and Find Full Text PDF

Temozolomide-Derived Therapeutic Strategies to Overcome Resistance in Glioblastoma.

J Med Chem

September 2025

Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.

Glioblastoma multiforme (GBM) accounts for nearly half of malignant CNS tumors and has a dismal 5-year survival rate of 5.5%. The current standard of care comprises maximal surgical resection, followed by radiotherapy with concurrent temozolomide (TMZ) and subsequent adjuvant TMZ chemotherapy.

View Article and Find Full Text PDF