Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497084PMC
http://dx.doi.org/10.1002/advs.202402693DOI Listing

Publication Analysis

Top Keywords

kupffer cells
12
cell types
12
tmem16f
9
tmem16f expressed
8
expressed kupffer
8
cells
8
listeria monocytogenes
8
immune cell
8
correlated capacity
8
protective tmem16f
8

Similar Publications

This study explores how human antigen R (HuR) stabilizes fibroblast growth factor 19 (FGF19) mRNA, inhibiting Kupffer cell (KC) activation to reduce inflammation and fibrosis in non-alcoholic fatty liver disease (NAFLD). An animal model of NAFLD was established in mice by administering a high-fat diet (HFD). In vitro study utilized a lipopolysaccharide-induced immortalized mouse KC model.

View Article and Find Full Text PDF

[Kupffer cells, a new player in hypercholesterolemia and atherosclerosis].

Med Sci (Paris)

September 2025

Sorbonne Université, Inserm UMRS1269, Nutrition et obésités : approches systémiques, Nutriomics, Paris, France.

View Article and Find Full Text PDF

Assessing the impact of perfluoroalkyl substances on liver health: a comprehensive study using multi-donor human liver spheroids.

Environ Int

September 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States. Electronic address:

Background: Although per- and polyfluoroalkyl substances (PFAS) have been linked to chronic liver diseases, the specific cellular and molecular mechanisms by which different PFAS contribute to human liver dysfunction remain unclear. This study aims to elucidate those mechanisms.

Methods: We exposed a multi-donor human liver spheroid model composed of multiple cell types to 20 µM of PFHxS, PFOA, PFOS, or PFNA for seven days, followed by single-cell RNA sequencing and lipid staining.

View Article and Find Full Text PDF

T-2 Toxin Exploits Gut-Derived Staphylococcus Saprophyticus to Disrupt Hepatic Macrophage Homeostasis.

Adv Sci (Weinh)

September 2025

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.

T-2 toxin, a mycotoxin that frequently causes hidden contamination in food and animal feed, poses a substantial threat to both human and animal health. Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic pathogen that widely infects humans and various animals.

View Article and Find Full Text PDF

A novel extracellular mannan from Bacillus velezensis ameliorates metabolic-associated fatty liver disease by modulating gut microbiota in mice model.

Carbohydr Polym

November 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Metabolic associated fatty liver disease (MAFLD) is a globally recognized chronic metabolic disorder characterized by lipid metabolism abnormalities. Accumulating evidence indicates that exopolysaccharides (EPS) could modulate the gut microbiota structure and function to prevent and treat MAFLD. Herein, a novel EPS designated BVP1 was isolated from Bacillus velezensis CGMCC 24752.

View Article and Find Full Text PDF