Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioavailable heavy metal and their efficient phytoremediation in mining areas have major implications for environmental and human health. In this study, we investigated 12 dominant plants in a typical Mn ore area of Zunyi, Guizhou Province, China, to determine the heavy metal contents, morphologies, and environmental factors affecting Mn, Cd, Pb, Cu, Zn, and Cr in the plant parts and rhizosphere soil. The bioavailabilities and degrees of metals were evaluated using the ratios of the secondary to primary phase distributions and potential ecological risk indices. Principal component analysis, cluster analysis, positive matrix factorisation modelling, and redundancy analysis were used to trace the origins and correlations among the metals. The results indicate that the bioavailabilities were the highest for Mn and Cd in the study area, and all of the target heavy metals had bioavailabilities above the moderate ecological harm level. Statistical modelling indicates that there are four main pollution sources: mining, smelting, processing operations, and atmospheric deposition. The dominant plants had high heavy metal enrichments, bioconcentration factors, and translocation factors for Mn, Cu, Cr, Cd, and Zn. The redundancy analysis indicates that soil total N, total P, and pH affect metal absorption and distributions in Compositae and non-Compositae plants in low-N, low-P, and slightly alkaline mining environments. This study provides a feasible basis for the screening of heavy metal enrichment plants and the improvement of remediation technology in manganese ore area under the extreme environment of poor nutrition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-024-02030-zDOI Listing

Publication Analysis

Top Keywords

heavy metal
16
dominant plants
12
environmental factors
8
heavy metals
8
plants typical
8
manganese ore
8
ore area
8
redundancy analysis
8
heavy
6
plants
5

Similar Publications

Lead (Pb) contamination, a kind of heavy metal pollution, severely impacts organism growth and reproduction. Although vitellogenin (Vg) has been studied in many species, its characteristics in the pest Aleuroglyphus ovatus (Troupeau) (Acari: Acaridae) remain unknown. In this study, the full-length Vg gene of A.

View Article and Find Full Text PDF

The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.

View Article and Find Full Text PDF

Lutetium (Lu(III)), a heavy rare earth element, plays a critical role in advanced industrial processes and nuclear medicine applications. Given its high economic value and potential environmental risks, the recovery of Lu(III) from medical wastewater is both necessary and urgent. However, previous studies on the adsorption behavior of Lu(III) have been limited by low adsorption capacity, competition from coexisting metal ions, and the influence of environmental temperature.

View Article and Find Full Text PDF

Environmental sustainability is seriously threatened by the discharge of wastewater containing hazardous heavy metals (such as Cr, Cd, As, Hg, etc.). The utilization of microalgae has recently come to light as a viable, environmentally acceptable method for removing heavy metals from contaminated sites.

View Article and Find Full Text PDF

Significantly enhanced effects of heavy metals on the toxicity, bioconcentration and biomagnification under combined exposure.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.

Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.

View Article and Find Full Text PDF