Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO/LaTiO superlattice, where an interlayer electron transfer has been observed from LaTiO into LaNiO leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO/LaTiO interface is presented. As the magnetism is purely interfacial, a single LaNiO/LaTiO interface can essentially behave as an atomically thin strongly-correlated quasi-2D antiferromagnet, potentially allowing its technological utilization in advanced spintronic devices. Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an S→1 spin state instead.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310668DOI Listing

Publication Analysis

Top Keywords

high-spin state
8
lanio/latio interface
8
emergence interfacial
4
interfacial magnetism
4
magnetism strongly-correlated
4
strongly-correlated nickelate-titanate
4
nickelate-titanate superlattices
4
superlattices strongly-correlated
4
strongly-correlated transition-metal
4
transition-metal oxides
4

Similar Publications

RuO, the benchmark catalyst for the oxygen evolution reaction (OER), has traditionally been considered Pauli paramagnetic; however, recent findings have demonstrated its antiferromagnetic (AFM) properties, hinting at the opportunity to enhance RuO's OER performance by manipulating its magnetic traits. In this study, we successfully induced weak ferromagnetism in commercial RuO, transitioning it from an AFM state using an electrochemical sodiation method. This process resulted in high activity, achieving an overpotential of 145 mV to reach 10 mA cm and extending the service hours by more than 13 times compared to pristine RuO in 0.

View Article and Find Full Text PDF

Solid-State Quantum Coherence From a High-Spin Donor-Acceptor Conjugated Polymer.

Adv Mater

September 2025

School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.

View Article and Find Full Text PDF

Precise modulation of the electronic structure in transition metals, particularly the d-band center position and spin state, remains a critical challenge to expediting hydrogen evolution reaction (HER) kinetics. Herein, we report a NiPt/Ni-heterostructured catalyst enabling simultaneous optimization of the d-band electronic structure and spin state of Ni through regulation of the NiPt and Ni bridge sites. Combining operando spectroscopy, X-ray absorption spectroscopy, density functional theory, and ab initio molecular dynamics simulations, we establish that the coordination environment and spin states of Ni at the bridge sites were effectively modulated by altering the Pt content, achieving a transition of Ni centers from the low-spin to high-spin state, and optimized intermediate adsorption/desorption behaviors.

View Article and Find Full Text PDF

Axial ligand engineering is a promising strategy to enhance the performance of single-atom catalysts (SACs) in electrocatalysis. However, a single non-metallic axial coordination atom linked to monolayer SACs (MSACs) often exhibits insufficient stability. In this work, we designed a series of bilayer SACs (BSACs) with vertically stacked FeN and MN (M = Sc-Zn) layers bridged by axial non-metallic atoms (C, N, O, P, S, and Se).

View Article and Find Full Text PDF

Spin-adapted spin-flip-down time-dependent density functional theory.

J Chem Phys

September 2025

Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.

Molecular systems with orbital (near-)degeneracy at the Fermi level tend to adopt a high-spin ground state. In these systems, one often finds low-lying electronic excitations with a lower total spin that can be reached from the ground state by a spin-flip-down excitation. In this work, we present three spin-adapted spin-flip-down time-dependent density functional theory (SFD-TD-DFT) approaches to calculate the excitation energies for these types of electronic transitions.

View Article and Find Full Text PDF