Publications by authors named "Lucas Visscher"

Molecular systems with orbital (near-)degeneracy at the Fermi level tend to adopt a high-spin ground state. In these systems, one often finds low-lying electronic excitations with a lower total spin that can be reached from the ground state by a spin-flip-down excitation. In this work, we present three spin-adapted spin-flip-down time-dependent density functional theory (SFD-TD-DFT) approaches to calculate the excitation energies for these types of electronic transitions.

View Article and Find Full Text PDF

In this paper, we present the Amsterdam Modeling Suite (AMS), a comprehensive software platform designed to support advanced molecular and materials simulations across a wide range of chemical and physical systems. AMS integrates cutting-edge quantum chemical methods, including Density Functional Theory (DFT) and time-dependent DFT, with molecular mechanics, fluid thermodynamics, machine learning techniques, and more, to enable multi-scale modeling of complex chemical systems. Its design philosophy allows for seamless coupling between components, facilitating simulations that range from small molecules to complex biomolecular and solid-state systems, making it a versatile tool for tackling interdisciplinary challenges, both in industry and in academia.

View Article and Find Full Text PDF

Background: The aim of this systematic review and meta-analysis was to evaluate the effectiveness of different suture materials and techniques for laparotomy closure.

Methods: A literature search was conducted in 3 databases in April 2024. All randomized controlled trials (RCTs) and prospective cohort studies on laparotomy closure were included.

View Article and Find Full Text PDF

Reduced density matrix functional theory (RDMFT) and coupled cluster theory restricted to paired double excitations (pCCD) are emerging as efficient methodologies for accounting for the so-called non-dynamic electronic correlation effects. Up to now, molecular calculations have been performed with real-valued orbitals. However, before extending the applicability of these methodologies to extended systems, where Bloch states are employed, the subtleties of working with complex-valued orbitals and the consequences of imposing time-reversal symmetry must be carefully addressed.

View Article and Find Full Text PDF

Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals.

View Article and Find Full Text PDF

Heterogeneous catalysis plays a critical role in many industrial processes, including the production of fuels, chemicals, and pharmaceuticals, and research to improve current catalytic processes is important to make the chemical industry more sustainable. Despite its importance, the challenge of identifying optimal catalysts with the required activity and selectivity persists, demanding a detailed understanding of the complex interactions between catalysts and reactants at various length and time scales. Density functional theory (DFT) has been the workhorse in modeling heterogeneous catalysis for more than three decades.

View Article and Find Full Text PDF
Article Synopsis
  • Heavy atom compounds are difficult to analyze in computational chemistry due to the need to manage relativistic and correlation effects simultaneously, as they often exhibit strong correlation, complicating methods like perturbation theory and single-reference coupled cluster (CC) methods.
  • To address this, researchers proposed a DMRG-tailored CC method that corrects CC results using density matrix renormalization group wave functions, enabling more accurate calculations for these complex systems.
  • This paper presents a comprehensive implementation of this method, applicable to polyatomic molecules with heavy atoms and strong multireference characteristics, demonstrated through the study of the chiral uranium compound NUHFI and comparisons with the NUF molecule for vibrational frequency analysis.
View Article and Find Full Text PDF

When using quantum chemical methods to study electronically excited states of open-shell molecules, it is often beneficial to start with wave functions that are spin eigenfunctions. For excited states of molecules containing heavy elements, spin-orbit coupling (SOC) is important and needs to be included as well. An efficient approach is to include SOC perturbatively on top of a restricted open-shell Kohn-Sham (ROKS) time-dependent density functional theory, which can be combined with the Tamm-Dancoff approximation (TDA) to suppress numerical instabilities.

View Article and Find Full Text PDF

We present the development and implementation of relativistic coupled cluster linear response theory (CC-LR), which allows the determination of molecular properties arising from time-dependent or time-independent electric, magnetic, or mixed electric-magnetic perturbations (within a common gauge origin for the magnetic properties) as well as taking into account the finite lifetime of excited states in the framework of damped response theory. We showcase our implementation, which is capable to offload the computationally intensive tensor contractions characteristic of coupled cluster theory onto graphical processing units, in the calculation of (a) frequency-(in)dependent dipole-dipole polarizabilities of IIB atoms and selected diatomic molecules, with a particular emphasis on the calculation of valence absorption cross sections for the I molecule; (b) indirect spin-spin coupling constants for benchmark systems such as the hydrogen halides (HX, X = F-I) as well the HSe-HO dimer as a prototypical system containing hydrogen bonds; and (c) optical rotations at the sodium D line for hydrogen peroxide analogues (HY, Y = O, S, Se, Te). Thanks to this implementation, we are able to show the similarities in performance, but often the significant discrepancies, between CC-LR and approximate methods such as density functional theory.

View Article and Find Full Text PDF

We present the implementation of quadratic response theory based upon the relativistic equation-of-motion coupled cluster method. We showcase our implementation, whose generality allows us to consider both time-dependent and time-independent electric and magnetic perturbations, by considering the static and frequency-dependent hyperpolarizability of hydrogen halides (HX, X = F-At), providing comprehensive insights into their electronic response characteristics. Additionally, we evaluated the Verdet constant for noble gases Xe and Rn and discussed the relative importance of relativistic and electron correlation effects for these magneto-optical properties.

View Article and Find Full Text PDF

The Resolution of Identity (RI) technique has been employed to speed up the use of hybrid exchange-correlation (xc) functionals at the TDDFT level using the Hybrid Diagonal Approximation. The RI has been implemented within the polTDDFT algorithm (a complex damped polarization method) in the AMS/ADF suite of programs. A speedup factor of 30 has been obtained with respect to a previous numerical implementation, albeit with the same level of accuracy.

View Article and Find Full Text PDF

We report an all-electron, atomic orbital (AO)-based, two-component (2C) implementation of the approximation (GWA) for closed-shell molecules. Our algorithm is based on the space-time formulation of the GWA and uses analytical continuation (AC) of the self-energy, and pair-atomic density fitting (PADF) to switch between AO and auxiliary basis. By calculating the dynamical contribution to the self-energy at a quasi-one-component level, our 2C- algorithm is only about a factor of 2-3 slower than in the scalar relativistic case.

View Article and Find Full Text PDF

Correction for 'Automated assessment of redox potentials for dyes in dye-sensitized photoelectrochemical cells' by Jelena Belić , , 2022, , 197-210, https://doi.org/10.1039/D1CP04218A.

View Article and Find Full Text PDF

Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set.

View Article and Find Full Text PDF

Localized molecular orbitals are often used for the analysis of chemical bonds, but they can also serve to efficiently and comprehensibly compute linear response properties. While conventional canonical molecular orbitals provide an adequate basis for the treatment of excited states, a chemically meaningful identification of the different excited-state processes is difficult within such a delocalized orbital basis. In this work, starting from an initial set of supermolecular canonical molecular orbitals, we provide a simple one-step top-down embedding procedure for generating a set of orbitals, which are localized in terms of the supermolecule but delocalized over each subsystem composing the supermolecule.

View Article and Find Full Text PDF

The continuous improvement of computer architectures allows for the simulation of molecular systems of growing sizes. However, such calculations still require the input of initial structures, which are also becoming increasingly complex. In this work, we present CAT, a Compound Attachment Tool (source code available at https://github.

View Article and Find Full Text PDF

The -Bethe-Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qs)-BSE approach, which is suitable for calculations on large molecules.

View Article and Find Full Text PDF

Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization, and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations that are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation.

View Article and Find Full Text PDF

Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex.

View Article and Find Full Text PDF

The high computational scaling with the basis set size and the number of correlated electrons is a bottleneck limiting applications of coupled cluster algorithms, in particular for calculations based on two- or four-component relativistic Hamiltonians, which often employ uncontracted basis sets. This problem may be alleviated by replacing canonical Hartree-Fock virtual orbitals by natural orbitals (NOs). In this paper, we describe the implementation of a module for generating NOs for correlated wavefunctions and, in particular, second order Møller-Plesset perturbation frozen natural orbitals (MP2FNOs) as a component of our novel implementation of relativistic coupled cluster theory for massively parallel architectures [Pototschnig et al.

View Article and Find Full Text PDF

Dye-sensitized photoelectrochemical cells are promising devices in solar energy conversion. However, several limitations still have to be addressed, such as the major loss pathway through charge recombination at the dye-semiconductor interface. Charge separating dyes constructed as push-pull systems can increase the spatial separation of electron and hole, decreasing the recombination rate.

View Article and Find Full Text PDF

In the new field of quantum plasmonics, plasmonic excitations of silver and gold nanoparticles are utilized to manipulate and control light-matter interactions at the nanoscale. While quantum plasmons can be described with atomistic detail using Time-Dependent Density Functional Theory (DFT), such studies are computationally challenging due to the size of the nanoparticles. An efficient alternative is to employ DFT without approximations only for the relatively fast ground state calculations and use tight-binding approximations in the demanding linear response calculations.

View Article and Find Full Text PDF

We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm (see Yalouz et al. . , , 024004).

View Article and Find Full Text PDF

Sustainable solutions for hydrogen production, such as dye-sensitized photoelectrochemical cells (DS-PEC), rely on the fundamental properties of its components whose modularity allows for their separate investigation. In this work, we design and execute a high-throughput scheme to tune the ground state oxidation potential (GSOP) of perylene-type dyes by functionalizing them with different ligands. This allows us to identify promising candidates which can then be used to improve the cell's efficiency.

View Article and Find Full Text PDF

We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF and YbF species, respectively.

View Article and Find Full Text PDF