Comprehensive Phytochemical Profile of Leaves, Stems and Fruits from Orthopterygium huaucui (A. Gray) Hemsl. and their Antioxidant Activities.

Chem Biodivers

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, 7800024, Santiago, Chile.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Orthopterygium huaucui, commonly known as "Pate", is a medicinal shrub belonging to the Anacardiaceae family used locally to treat burns and stomach pains. Endemic to Peru, chemical studies on O. huaucui are limited. In this study, Ultra-High Performance Liquid Chromatography Quadrupole/Orbitrap Electrospray Ionization Tandem Mass Spectrometry (UHPLC Q/Orbitrap/ESI/MS/MS) was used to identify secondary metabolites in leaves, stems and fruits, and the antioxidant capacities of the different parts were compared. In addition, several compounds such as methyl gallate, gallic acid, kaempferol, quercetin, and quercetin 3-O-β-glucuronide were successfully isolated from the methanolic extract of the leaves of this species for the first time. Untargeted UHPLC Q/Orbitrap/ESI/MS/MS analysis tentatively identified seventy-six compounds in the different parts of the plant, showing that this species as an interesting source of flavonoids, procyanidins and tannins. The phenolic content in leaves and stems was 334.31±4.34 and 295.18±6.38 gallic acid equivalents/100 g dry plant, respectively, while that of fruits was lower (99.92±5.45 mg/100 g). Leaves had twice the flavonoid content than fruits (210.38±3.85 versus 87.42±3.85 quercetin equivalents/100 g). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) results indicated high antioxidant activity in all parts, with stems and leaves showing IC of 12.8 μg/mL, and fruits showing less activity (IC=38.6 μg/mL). The Oxygen Radical Absorbance Capacity (ORAC) test showed higher antioxidant values in the stems (467.82±21.17 μmol Trolox equivalents/100 g). This study provides valuable information on the chemistry of O. huaucui and highlights its antioxidant potential, especially in leaves and stems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202400746DOI Listing

Publication Analysis

Top Keywords

leaves stems
16
stems fruits
8
orthopterygium huaucui
8
uhplc q/orbitrap/esi/ms/ms
8
gallic acid
8
leaves
7
stems
6
fruits
5
antioxidant
5
comprehensive phytochemical
4

Similar Publications

Acanthopanax sessiliflorus, belonging to the Araliaceae family, is used as medicinal herbs and dietary supplements, and can be consumed as seasoned vegetables, salads, pickles, functional tea, and wine. Their edible parts (shoots, leaves, fruis, and stems) are considered as a highly valuable food source with health benefits. The comparison of the qualitative and quantitative characteristics of functional compounds in these plant parts is still limited.

View Article and Find Full Text PDF

This study focuses on the differences in bioaccumulation and metabolic patterns of seven fungicides between and its host plant, peanut. The BCF value of the fungicides in ranging from 0.62 to 2.

View Article and Find Full Text PDF

Effect of adding Georgi to feed on the microbial diversity in cattle feces.

Front Microbiol

August 2025

Institute of Animal Science, Ningxia Academy of Agriculture and Forestry, Yinchuan, Ningxia, China.

Introduction: Inflammation and oxidative stress can seriously endanger the health and growth of beef cattle. Georgi (SB) has significant anti-inflammatory and antioxidative effects. However, studies on the application of SB stems and leaves as roughage in animal husbandry are limited.

View Article and Find Full Text PDF

Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.

Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF