Comparative Transcriptome Analysis of Reveals Critical Pathways during Development.

Int J Mol Sci

Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210000, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is distributed in several Asian countries. The larvae and adults often cause substantial economic losses to Solanaceae crops such as potato, tomato, eggplant, and Chinese boxthorn. Even though a chromosome-level genome has been documented, the expression profiles of genes involved in development are not determined. In this study, we constructed embryonic, larval, pupal, and adult transcriptomes, generated a comprehensive RNA-sequencing dataset including ~52 Gb of clean data, and identified 602,773,686 cleaned reads and 33,269 unigenes. A total of 18,192 unigenes were successfully annotated against NCBI nonredundant protein sequences, Swissprot, Eukaryotic Orthologous Groups, Gene Ontology (GO), or Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. There were 3580, 2040, 5160, 2496, 3008, and 3895 differentially expressed genes (DEGs) between adult/egg, egg/larval, larval/pupal, adult/pupal, egg/pupal, and adult/larval samples, respectively. GO and KEGG analyses of the DEGs highlighted several critical pathways associated with specific developing stages. This is the first comprehensive transcriptomic dataset encompassing all developmental stages in . Our data may facilitate the exploitation of gene targets for pest control and can serve as a valuable gene resource for future molecular investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276636PMC
http://dx.doi.org/10.3390/ijms25147505DOI Listing

Publication Analysis

Top Keywords

critical pathways
8
comparative transcriptome
4
transcriptome analysis
4
analysis reveals
4
reveals critical
4
pathways development
4
development distributed
4
distributed asian
4
asian countries
4
countries larvae
4

Similar Publications

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Many people living with a stoma face challenges beyond their physical needs. Although stoma care products and services have advanced, significant gaps persist in national policies and equitable access. Current policies appear to prioritise cost savings over the wellbeing of people living with a stoma, not appreciating the expertise of specialist stoma care nurses (SSCNs) and the experience of people living with a stoma.

View Article and Find Full Text PDF

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF

The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.

View Article and Find Full Text PDF