Colistin Induces Oxidative Stress and Apoptotic Cell Death through the Activation of the AhR/CYP1A1 Pathway in PC12 Cells.

Antioxidants (Basel)

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colistin is commonly regarded as the "last-resort" antibiotic for combating life-threatening infections caused by multidrug-resistant (MDR) gram-negative bacteria. Neurotoxicity is a potential adverse event associated with colistin application in clinical settings, yet the exact molecular mechanisms remain unclear. This study examined the detrimental impact of colistin exposure on PC12 cells and the associated molecular mechanisms. Colistin treatment at concentrations of 0-400 μM decreased cell viability and induced apoptotic cell death in both time- and concentration-dependent manners. Exposure to colistin triggered the production of reactive oxygen species (ROS) and caused oxidative stress damage in PC12 cells. N-acetylcysteine (NAC) supplementation partially mitigated the cytotoxic and apoptotic outcomes of colistin. Evidence of mitochondrial dysfunction was observed through the dissipation of membrane potential. Additionally, colistin treatment upregulated the expression of AhR and CYP1A1 mRNAs in PC12 cells. Pharmacological inhibition of AhR (e.g., using α-naphthoflavone) or intervention with the CYP1A1 gene significantly decreased the production of ROS induced by colistin, subsequently lowering caspase activation and cell apoptosis. In conclusion, our findings demonstrate, for the first time, that the activation of the AhR/CYP1A1 pathway contributes partially to colistin-induced oxidative stress and apoptosis, offering insights into the cytotoxic effects of colistin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11273690PMC
http://dx.doi.org/10.3390/antiox13070827DOI Listing

Publication Analysis

Top Keywords

pc12 cells
16
oxidative stress
12
colistin
10
apoptotic cell
8
cell death
8
activation ahr/cyp1a1
8
ahr/cyp1a1 pathway
8
molecular mechanisms
8
colistin treatment
8
colistin induces
4

Similar Publications

Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system, often resulting in partial or complete loss of sensory and motor functions. Ferroptosis, a lipid peroxidation-driven apoptotic process triggered by iron overload, has emerged as a novel form of programmed cell death and a focal point in post-SCI cell death research. Exosomes (Exo), as delivery vehicles, exhibit multiple advantages, including superior encapsulation capacity, high targeting efficiency, and enhanced blood-brain barrier penetration to reach the central nervous system.

View Article and Find Full Text PDF

Ferroptosis is emerging as a pathological mechanism of intracerebral hemorrhage (ICH), and inhibiting ferroptosis contributes to improving prognosis. N6-methyladenosine (m6A) methylation is a common RNA modification that is involved in disease progression. This study aimed to explore the effect of METTL14, a m6A transmethylase, on ferroptosis and the molecular mechanism, and identify its role in ICH progression.

View Article and Find Full Text PDF

Interference-free SERS tags for copper ion sensing upon hypoxia by in situ hot-spot generation.

Talanta

August 2025

School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, PR China. Electronic address:

Abnormal cellular Cu level is closely associated with many various pathological conditions, including cancer, Menkes disease, and Wilson's disease. However, sensitive and accurate detection of intracellular Cu remains challenging. To address this, we engineered an interference-free surface-enhanced Raman scattering (SERS) nanoprobe utilizing a target-responsive aggregation mechanism for selective Cu detection.

View Article and Find Full Text PDF

The ability to quantify protein secretion is critical for studying the secretory pathway. This is particularly important in endocrine cells where dysregulated hormone secretion is associated with the development of diseases such as type 2 diabetes. To measure protein secretion, researchers have previously relied on techniques such as ELISA, RIA and Western blot, which all present limitations, including cost and time consumption.

View Article and Find Full Text PDF

HSQC-TOCSY fingerprinting-guided isolation of undescribed glycosides and scalemic pentaketides with neuroprotective activity from a mesophotic zone Ircinia sponge-associated fungus, Acremonium sp. NBUF233.

Fitoterapia

August 2025

Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 10019, China. Electronic address:

HSQC-TOCSY fingerprinting-guided fractionation led to the discovery of three undescribed pentaketide, hexaketide, and monocyclofarnesol-type sesquiterpenoid glycosides, namely acremols A-C (1-3), along with new scalemic pentaketides (+)-4 and (-)-4, designated as (+) and (-)-acremols D, from fungus Acremonium sp. NBUF233 associated with a mesophotic zone Ircinia sponge. The structural elucidation was achieved through comprehensive spectroscopic data analysis combined with chemical degradation.

View Article and Find Full Text PDF