98%
921
2 minutes
20
KCNQ1/Kv7, a low-voltage-gated K channel, regulates cardiac rhythm and glucose homeostasis. While mutations are associated with long-QT syndrome and type2 diabetes, its function in human pancreatic cells remains controversial. We identified a homozygous mutation (R397W) in an individual with permanent neonatal diabetes melitus (PNDM) without cardiovascular symptoms. To decipher the potential mechanism(s), we introduced the mutation into human embryonic stem cells and generated islet-like organoids (SC-islets) using CRISPR-mediated homology-repair. The mutation did not affect pancreatic differentiation, but affected channel function by increasing spike frequency and Ca flux, leading to insulin hypersecretion. With prolonged culturing, the mutant islets decreased their secretion and gradually deteriorated, modeling a diabetic state, which accelerated by high glucose levels. The molecular basis was the downregulated expression of voltage-activated Ca channels and oxidative phosphorylation. Our study provides a better understanding of the role of KCNQ1 in regulating insulin secretion and β-cell survival in hereditary diabetes pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269803 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.110291 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Physics, University of Strathclyde, Glasgow, G1 1XJ, United Kingdom.
The calibration of the JET x-ray spectrometer is presented. The absolute throughput, diffractor focusing, and instrument function of the spectrometer are presented, and the quality of the ion temperature measurement is re-assessed, particularly at the lower end. The addition of a second diffractor enables the simultaneous measurements of the spectra from H- and He-like nickel, which widens the spatial coverage of the core-ion temperature measurements for high-performance plasmas at a fixed Bragg angle range.
View Article and Find Full Text PDFJ Org Chem
September 2025
National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
We herein describe a novel decarboxylation/cyclization sequence involving a three-component reaction of dialkyl 2-(alkoxymethylene)malonate, amines, and terminal alkyne ester or internal alkyne ester catalyzed by CsCO under microwave conditions. These two types of highly chemo- and regioselective transformations were accomplished by different reaction channels to furnish a wide range of functionalized 8-hydroxyisoquinoline-1(2)-ones (21 examples) and 2-pyridones (18 examples) in good to excellent yields and might provide new opportunities for the discovery of N-heterocyclic drugs and other functional molecules.
View Article and Find Full Text PDF