Publications by authors named "Anca Margineanu"

This tutorial focuses on presenting experimental protocols for acquiring instrument response functions (IRF) and for calibrating the instruments using reference dyes with validated lifetime in time-domain fluorescence lifetime measurements. Step-by-step preparation of different samples used for the calibrations (scatter solutions, crystals generating second harmonic signal and reference dyes) and the corresponding instrument settings in one- and two-photon excitation are explained. The expected shape of the IRF curves and reference decays are shown using experimentally acquired examples, followed by troubleshooting of the instruments when the expected results are distorted.

View Article and Find Full Text PDF

KCNQ1/Kv7, a low-voltage-gated K channel, regulates cardiac rhythm and glucose homeostasis. While mutations are associated with long-QT syndrome and type2 diabetes, its function in human pancreatic cells remains controversial. We identified a homozygous mutation (R397W) in an individual with permanent neonatal diabetes melitus (PNDM) without cardiovascular symptoms.

View Article and Find Full Text PDF

Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood.

View Article and Find Full Text PDF

Huntington's disease is a dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat, encoding for the amino acid glutamine (Q), present in the first exon of the protein huntingtin. Over the threshold of Q39 HTT exon 1 (HTTEx1) tends to misfold and aggregate into large intracellular structures, but whether these end-stage aggregates or their on-pathway intermediates are responsible for cytotoxicity is still debated. HTTEx1 can be separated into three domains: an N-terminal 17 amino acid region, the polyglutamine (polyQ) expansion and a C-terminal proline rich domain (PRD).

View Article and Find Full Text PDF

Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory.

View Article and Find Full Text PDF

The polymodal channel TRPV4 has been shown to regulate development and maintenance of cartilage. Here we investigate whether TRPV4 activity regulates the early deposition and structure of collagen matrix in the femoral head cartilage by comparing the 3D morphology and the sub-micrometer organization of the collagen matrix between wild type and Trpv4 mice pups four to five days old. Two-photon microscopy can be used to conduct label-free imaging of cartilage, as collagen generates a second harmonic signal (second harmonic generation [SHG]) under pulsed infrared excitation.

View Article and Find Full Text PDF

Microglia constitute a highly specialized network of tissue-resident immune cells that is important for the control of tissue homeostasis and the resolution of diseases of the CNS. Little is known about how their spatial distribution is established and maintained in vivo. Here we establish a new multicolor fluorescence fate mapping system to monitor microglial dynamics during steady state and disease.

View Article and Find Full Text PDF

We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noise with 100's to 1000's of FOV enables unbiased quantitative analysis with high statistical power.

View Article and Find Full Text PDF

Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3'-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation.

View Article and Find Full Text PDF

Purpose: To correct for attenuation in two-photon fluorescence (TPF) measurements of riboflavin absorption in porcine corneas.

Methods: Two-photon fluorescence imaging of riboflavin was performed using excitation at a wavelength of 890 nm, with fluorescence signal detected between 525 and 650 nm. TPF signal attenuation was demonstrated by imaging from either side of a uniformly soaked corneoscleral button.

View Article and Find Full Text PDF

Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset).

View Article and Find Full Text PDF

Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB).

View Article and Find Full Text PDF

A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy.

View Article and Find Full Text PDF

We performed analyses of the molecular mechanisms involved in the regulation of phospholipase Cγ2 (PLCγ2). We identified several regions in the PLCγ-specific array, γSA, that contribute to autoinhibition in the basal state by occlusion of the catalytic domain. While the activation of PLCγ2 by Rac2 requires stable translocation to the membrane, the removal of the domains required for membrane translocation in the context of an enzyme with impaired autoinhibition generated constitutive, highly active PLC in cells.

View Article and Find Full Text PDF

Lipoplex formation for normal and cholesterol-modified oligonucleotides is investigated by fluorescence correlation spectroscopy (FCS). To overcome the problems related to the fitting of autocorrelation curves when fluorescence bursts are present, the baseline fluorescence levels and the fluorescence bursts in the same trace were separately analyzed. This approach was not previously used in FCS studies of lipoplexes and allowed a more detailed characterization of this heterogeneous system.

View Article and Find Full Text PDF

Biofilms similar to those present in water distribution pipes of anthropogenic aquatic systems were simulated in a rotating annular reactor using a non-Legionella community consisting of Aeromonas hydrophila, Escherichia coli, Flavobacterium breve and Pseudomonas aeruginosa. The impact of this community and Acanthamoeba castellanii on the replication of Legionella pneumophila was investigated. Despite the presence of 10(7) non-Legionella bacteria, culture and real-time polymerase chain reaction (PCR) results clearly showed that biofilm-associated Legionella bacteria only increased after intracellular replication in A.

View Article and Find Full Text PDF

A new membrane probe, based on the perylene imide chromophore, with excellent photophysical properties (high absorption coefficient, quantum yield (QY) approximately 1, high photostability) and excited in the visible domain is proposed for the study of membrane rafts. Visualization of separation between the liquid-ordered (Lo) and the liquid-disordered (Ld) phases can be achieved in artificial membranes by fluorescence lifetime imaging due to the different decay times of the membrane probe in the two phases. Rafts on micrometer-scale in cell membranes due to cellular activation can also be observed by this method.

View Article and Find Full Text PDF
Article Synopsis
  • - Cholesterol-modified oligonucleotides were created to explore how they interact with antisense oligonucleotides and cationic liposomes.
  • - The study found that electrostatic interactions are crucial for the successful combination of these oligonucleotides with cationic lipids.
  • - This new formulation led to a modest improvement in reducing P-glycoprotein expression in cells, indicating a potential for enhanced therapeutic effects.
View Article and Find Full Text PDF