98%
921
2 minutes
20
Haploinsufficiency for is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hours of cardiac differentiation is sufficient to partially rescue CPC and CM defects in heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257636 | PMC |
http://dx.doi.org/10.1101/2024.07.09.602666 | DOI Listing |
Neural crest cells (NCCs) are a multipotent cell population that undergo specification, epithelial-to-mesenchymal transition, migration, and differentiation into a plethora of cell types. A wealth of studies across various embryonic model systems have established dogma as to the molecular mechanisms and signaling cascades that contribute to NCC development. While Wnt, FGF, and BMP signaling pathways have well-established and essential roles in several aspects of NCC development, the Hedgehog (HH) signaling pathway has received limited attention for any specific role in this process.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of Developmental and Regenerative Biology, iORGANtech Limited Company (Suzhou), Suzhou, 215000, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tia
Progress in uncovering the causes of extrahepatic biliary diseases and developing new therapies has been constrained by the inaccessibility of donor tissue and a lack of experimental models. Although hepatic, intrahepatic biliary, and pancreatic 2D/3D models have been successfully established from pluripotent stem cells (PSCs), in vitro generation of extrahepatic biliary cells remains a major challenge, due to the absence of developmental cues. Here we report a de novo method for directed differentiation of human PSCs (both embryonic and induced) into pancreato-biliary progenitors-like cells (PBPLCs).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Department of Rehabilitation Medicine, First Hospital of jilin University, Changchun, China.
Osteoporosis is a systemic skeletal disease characterized by reduced bone density and degeneration of bone microstructure. It is prevalent among postmenopausal women and elderly individuals. Current treatments face challenges such as drug side effects, low adherence, and comorbidities.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China. Electronic address:
Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Sclerostin, a key regulator of Wnt/β-catenin signaling, exhibits dual therapeutic potential in bone disorders: its inhibition promotes bone formation in osteoporosis, while its mimicry suppresses aberrant bone growth in osteoarthritis (OA). Using structural insights from NMR studies, we identified two sclerostin-derived peptides: SC-1 (an 18-mer) from loop 2, and SC-3 (a 14-mer) from loop 3. Molecular modeling showed that SC-1 binds to the first ectodomain of LRP6, potentially displacing sclerostin through competitive inhibition to activate Wnt signaling.
View Article and Find Full Text PDF