Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The attractive physical properties of two-dimensional (2D) semiconductors in group IVA-VIA have been fully revealed in recent years. Combining them with 2D ambipolar materials to construct van der Waals heterojunctions (vdWHs) can offer tremendous opportunities for designing multifunctional electronic and optoelectronic devices, such as logic switching circuits, half-wave rectifiers, and broad-spectrum photodetectors. Here, an optimized SnSeS is grown to design a SnSeS/MoTe vdWH for logic operation and wide-spectrum photodetection. Benefiting from the excellent gate modulation under the appropriate sulfur substitution and type-II band alignment, the device exhibits reconfigurable antiambipolar and ambipolar transfer behaviors at positive and negative source-drain voltage (), enabling stable XNOR logic operation. It also features a gate-modulated positive and negative rectifying behavior with rectification ratios of 265:1 and 1:196, confirming its potential as half-wave logic rectifiers. Besides, the device can respond from visible to infrared wavelength up to 1400 nm. Under 635 nm illumination, the maximum responsivity of 1.16 A/W and response time of 657/500 μs are achieved at the of -2 V. Furthermore, due to the strong in-plane anisotropic structure of SnSeS-alloyed nanosheet and narrow bandgap of 2H-MoTe, it shows a broadband polarization-sensitive function with impressive photocurrent anisotropic ratios of 15.6 (635 nm), 7.0 (808 nm), and 3.7 (1310 nm). The direction along the maximum photocurrent can be reconfigurable depending on the wavelengths. These results indicate that our designed alloyed SnSeS/MoTe vdWH has reconfigurable logic operation and broadband photodetection capabilities in 2D multifunctional integrated circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c06028DOI Listing

Publication Analysis

Top Keywords

logic operation
12
van der
8
der waals
8
sulfur substitution
8
snses/mote vdwh
8
positive negative
8
logic
6
reconfigurable
4
reconfigurable van
4
waals heterojunction
4

Similar Publications

DNA Nanocage-Based Artificial Receptor Generator for Hydrophobic Interaction-Based Specific Membrane Anchoring.

Anal Chem

September 2025

Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.

Membrane receptor recognition is a specific biotargeting strategy for disease diagnosis and treatment, but it suffers from insufficient receptor expression levels. Hydrophobic interaction-based membrane anchoring strategy allows high anchoring density, but it lacks specificity. In this study, we present a DNA nanocage-based artificial receptor generator (DNARG) that combines the advantages of high specificity of receptor recognition and high density of hydrophobic membrane anchoring.

View Article and Find Full Text PDF

A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.

View Article and Find Full Text PDF

Prospects for silvicultural enhancement of fire resistance in mesic westside forests of the Pacific Northwest.

PLoS One

September 2025

United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland Oregon, United States of America.

Increasing wildfire activity in mesic, temperate Pacific Northwest forests west of the Cascade Range crest has stimulated interest in understanding whether alternative forest management practices could reduce risk of stand-replacing fire. To explore how management can enhance fire resistance in these forests and assess tradeoffs among resistance enhancement, carbon sequestration and storage, and economic returns, we conducted 40-year simulations of stand development with BioSum, a framework for conducting landscape analysis with the Forest Vegetation Simulator (FVS), utilizing a statistically representative and spatially balanced sample of Forest Inventory and Analysis (FIA) plots. Simulation outcomes under business-as-usual silviculture were contrasted with fire-aware silviculture, and treatment optimization logic was developed and applied to represent landscape-scale outcomes under business-as-usual and fire-focused management scenarios.

View Article and Find Full Text PDF

Children are not the main agents of language change.

Psychol Rev

September 2025

Department of Sociological and Psychological Sciences, Abertay University.

The long-standing claim that young children are the main agents of language change is often presented as an established fact, and has tacitly guided research in developmental science and evolutionary linguistics. It rests on the assumption that language change arises from language acquisition errors predominantly committed by children. Here, we review whether arguments in support of this idea stand up to logical and empirical scrutiny.

View Article and Find Full Text PDF

Janus MXene Fiber Constructed via Flake Orientation Engineering.

Adv Mater

September 2025

Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

The orientation of MXene flakes has received increasing research attention as it plays a critical role in determining the performance of MXene-based assemblies. Engineering MXene flakes into horizontal or vertical orientations can offer distinct advantages such as higher electrical conductivity, higher mechanical strength, and more efficient ion/molecule transport across the flakes. However, the benefits of horizontal and vertical orientations are mutually exclusive, and both of them possess structural symmetry that restricts their ability for stimuli-responsive deformation.

View Article and Find Full Text PDF