Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Numerous studies have confirmed that stimulating the mid-brain motor nuclei can regulate movement forcibly for robo-pigeons, but research on behavior modulation using non-motor nuclei is scarce.

Objective: In this study, we constructed a spatial preference behavior by stimulating the stratum griseum periventriculare (SGP), a nucleus correlated with fear and escape, for robo-pigeons.

Methods: The study was carried out in a square-enclosed experimental field, with a designated box serving as the 'safe' area for the robo-pigeons. If the robo-pigeon exits this area, the SGP will be stimulated. After a brief training period, the robo-pigeons will have a clear spatial preference for the box.

Results: The result from five pigeons has shown that, after simple training, the animals develop a spatial preference for the box. They can quickly return to the box in any situation when the SGP is stimulated, with a success rate exceeding 80% (89.0 ± 6.5%). Moreover, this behavior is highly stable and remains consistent, unaffected by changes in the location of the box or the interference box.

Conclusion: The results prove that using the electrical stimulus could enable animals to accomplish more complex tasks. It may offer a novel approach to regulating pigeon behavior and further advance the study of cyborg animals.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-240048DOI Listing

Publication Analysis

Top Keywords

spatial preference
16
preference behavior
8
electrical stimulus
8
behavior
5
spatial
4
robo-pigeons
4
behavior robo-pigeons
4
robo-pigeons induced
4
induced electrical
4
stimulus targeting
4

Similar Publications

This study investigated the learning strategy preferences of 11-month-old APP/PS1 double transgenic (Tg) mice, a well-established murine model of Alzheimer's disease (AD). APP/PS1 Tg and non-Tg control mice were serially trained in visual and hidden platform tasks in the Morris water maze. APP/PS1 Tg mice performed poorly in visual platform training compared with non-Tg mice but performed as well as non-Tg mice in hidden platform training.

View Article and Find Full Text PDF

Introduction: The rapidly expanding commercial spaceflight (CSF) market has fueled increasing interest in spaceflight experiences among individuals without professional astronaut qualifications. Such individuals may present with a range of medical conditions that add uncertainties to medical preparation and risk assessment for spaceflight. As the ear, nose, and throat (ENT) working group of the Aerospace Medical Association Ad Hoc Committee on Commercial Spaceflight, we conducted a scoping review to assess the available biomedical literature for ENT and neuro-vestibular conditions and physiology pertinent to spaceflight for nonprofessional space travelers.

View Article and Find Full Text PDF

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

This study sought to enhance visual acuity assessment using steady-state visual evoked potentials (SSVEPs) through subject-specific training methods. SSVEPs were elicited from eleven subjects using the vertical sinusoidal gratings at six various spatial frequency steps, and then the classical approach of Oz single-channel, the spatial filtering method of canonical correlation analysis (CCA), and five subject-specific training methods, i.e.

View Article and Find Full Text PDF

The divergence in folding pathways between RNA co-transcriptional folding (CTF) and free folding (FF) is crucial for understanding dynamic functional regulation of RNAs. Here, we developed a simplified all-atom molecular dynamics framework to systematically compare the folding kinetics of an RNA hairpin (PDB:1ZIH) under CTF and FF conditions. By analyzing over 800 microseconds of simulated trajectory, we found that despite convergence to identical native conformations across CTF simulations (with varied transcription rates) and FF simulations, they exhibit distinct preferences for the folding pathways defined by the order of base-pair formation.

View Article and Find Full Text PDF