Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately assess immunotherapy response in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to develop a CCCT-related gene prognostic index (CCRGPI) for assessing the prognosis and response to immune checkpoint inhibitor (ICI) therapy of HNSCC patients.

Methods: Two cellular models, the fibroblast-cancer cell indirect coculture (FCICC) model, and the fibroblast-cancer cell organoid (FC-organoid) model, were constructed to visualize the crosstalk between fibroblasts and cancer cells. Based on a HNSCC scRNA-seq dataset, the R package CellChat was used to perform cell communication analysis to identify gene pairs involved in CCCT. Least absolute shrinkage and selection operator (LASSO) regression was then applied to further refine the selection of these gene pairs. The selected gene pairs were subsequently subjected to stepwise regression to develop CCRGPI. We further performed a comprehensive analysis to determine the molecular and immune characteristics, and prognosis associated with ICI therapy in different CCRGPI subgroups. Finally, the connectivity map (CMap) analysis and molecular docking were used to screen potential therapeutic drugs.

Results: FCICC and FC-organoid models showed that cancer cells promoted the activation of fibroblasts into CAFs, that CAFs enhanced the invasion of cancer cells, and that CCCT was somewhat heterogeneous. The CCRGPI was developed based on 4 gene pairs: IGF1-IGF1R, LGALS9-CD44, SEMA5A-PLXNA1, and TNXB-SDC1. Furthermore, a high CCRGPI score was identified as an adverse prognostic factor for overall survival (OS). Additionally, a high CCRGPI was positively correlated with the activation of the P53 pathway, a high TP53 mutation rate, and decreased benefit from ICI therapy but was inversely associated with the abundance of various immune cells, such as CD4+ T cells, CD8+ T cells, and B cells. Moreover, Ganetespib was identified as a potential drug for HNSCC combination therapy.

Conclusions: The CCRGPI is reliable for predicting the prognosis and immunotherapy response of HSNCC patients and may be useful for guiding the individualized treatment of HNSCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234636PMC
http://dx.doi.org/10.1186/s12967-024-05447-6DOI Listing

Publication Analysis

Top Keywords

gene pairs
16
immunotherapy response
12
ici therapy
12
cancer cells
12
caf-cancer cell
8
gene prognostic
8
head neck
8
neck squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

Background: Omeprazole, a widely used proton pump inhibitor, has been associated with rare but serious adverse events such as myopathy. Previous research suggests that concurrent use of omeprazole with fluconazole, a potent cytochrome P450 (CYP) 2C19/3A4 inhibitor, may increase the risk of myopathy. However, the contribution of genetic polymorphisms in CYP enzymes remains unclear.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

Analysis of lncRNA-mRNA pairs induced by Colletotrichum camelliae reveals Cslnc170 as a regulator of CsLOX4 in tea plants.

Plant Physiol

September 2025

National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, West 130 Changjiang Road, Hefei 230036 Anhui, China.

Fungal diseases such as anthracnose substantially affect the growth of tea (Camellia sinensis) plants. Understanding disease resistance mechanisms and identifying resistance genes will aid in breeding resistant varieties. Non-coding RNAs, including long non-coding RNAs (lncRNAs), play critical roles in regulating plant immunity by influencing target gene expression; however, their role in disease resistance of tea plants remains underexplored.

View Article and Find Full Text PDF

Phantom epistasis through the lens of genealogies.

Genetics

September 2025

Department of Statistics, University of Oxford, Oxford OX1 3LB, UK.

Phantom epistasis arises when, in the course of testing for gene-by-gene interactions, the omission of a causal variant with a purely additive effect on the phenotype causes the spurious inference of a significant interaction between two SNPs. This is more likely to arise when the two SNPs are in relatively close proximity, so while true epistasis between nearby variants could be commonplace, in practice there is no reliable way of telling apart true epistatic signals from false positives. By considering the causes of phantom epistasis from a genealogy-based perspective, we leverage the rich information contained within reconstructed genealogies (in the form of ancestral recombination graphs) to address this problem.

View Article and Find Full Text PDF

The cardiac pacemaker activity is formed from multiple interlocking physiological networks, any one of which can generate rhythm. The interlocking is reciprocal so that they automatically replace each other. In such interlocking control systems, the association scores for individual components are necessarily low, even though causation, measured by the electric current carried by the relevant ion channels, is large.

View Article and Find Full Text PDF