98%
921
2 minutes
20
The closed pores play a critical role in improving the sodium storage capacity of hard carbon (HC) anode, however, their formation mechanism as well as the efficient modulation strategy at molecular level in the polymer-derived HCs is still lacking. In this work, the steric hindrance effect has been proposed to create closed pores in the polymer-derived HCs for the first time through grafting the aromatic rings within and between the main chains in the precursor. The experimental data and theoretical calculation demonstrate that steric-hindrance effect from the aromatic ring side group can increase backbone rigidity and the internal free volumes in the polymer precursor, which can prevent the over graphitization and facilitate the formation of closed pores during the carbonization process. As a result, the as-prepared HC anode exhibits a remarkably enhanced discharge capacity of 340.3 mAh/g at 0.1 C, improved rate performance (210.7 mAh/g at 5 C) as well as boosted cycling stability (86.4 % over 1000 cycles at 2 C). This work provides a new insight into the formation mechanisms of closed pores via steric hindrance engineering, which can shed light on the development of high-performance polymer-derived HC anode for sodium-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202409906 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
National Energy Metal Resources and New Materials Key Laboratory Engineering Research Center of the Ministry of Education for Advanced Battery Materials Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy School of Metallurgy and Environment, Central South University, Changsha 41008
Hard carbon (HC), recognized as the most promising anode material for sodium-ion batteries (SIBs), exhibits multiple forms of sodium storage (adsorption on graphitic layers, insertion between graphitic sheets, and filling in closed pores). Low initial coulombic efficiency (ICE) and low plateau region capacity are the main issues with HC, and it is necessary to understand the evolution laws of graphitic layers and closed pores. Here, we regulate the structure of graphitic layers by deliberately changing the oxygen content in HC materials and reveal the mechanism of formation of closed pores.
View Article and Find Full Text PDFChem Sci
August 2025
ARC Ctr. Excellence Electromat Sci., University of Wollongong Innovation Campus, North Wollongong NSW 2500 Australia.
Hard carbon is the most commercially viable anode material for sodium-ion batteries (SIBs), yet its application in ester-based electrolytes is hindered by sluggish interfacial ion diffusion and limited sodium nucleation kinetics. After comprehensive evaluation, an interfacial chemistry regulation strategy was proposed based on orbital hybridization between bismuth and electrolyte ions, which was realized through the introduction of ammonium bismuth citrate. The surface bismuth particles regulate the formation of a NaF-rich SEI through improved anion affinity.
View Article and Find Full Text PDFSolid state nanopores have emerged as powerful tools for single-molecule sensing, yet the rapid uncontrolled translocation of the molecule through the pore remains a key limitation. We have previously demonstrated that an active dual-nanopore system, consisting of two closely spaced pores operated via feedback controlled biasing, shows promise in achieving controlled, slowed-down translocation. Translocation control is achieved via capturing the DNA in a special tug-of-war configuration, whereby opposing electrophoretic forces at each pore are applied to a DNA molecule co-captured at the two pores.
View Article and Find Full Text PDFACS Omega
August 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2# Sipailou, Nanjing, Jiangsu 210096, P. R. China.
Abnormal sweating is closely associated with the occurrence and progression of various serious diseases, yet quantitatively and accurately assessing sweat pore function remains challenging. In this study, a crystalline covalent organic framework (COF) paper was developed for precise sweat pore analysis of sweating disorders. The delicately designed COF system achieved high-contrast sweat-responsive color change through the doping of sweat contents while showing no response to water, greatly enhancing resistance to environmental humidity interference.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Elucidating the formation mechanism of closed pores is critical for interpreting the sodium storage mechanism and developing high-performance hard carbon anodes for sodium-ion batteries. Although numerous strategies for fabricating closed pores have been developed, the underlying evolutionary principles remain poorly understood. This work identified the inherent relationship between pseudo-graphite structures and closed pores through regulating pseudo-graphite structures in the precursor and analyzing their structural evolution during high-temperature carbonization.
View Article and Find Full Text PDF