Precisely Regulating the Graphitic Layers of Hard Carbon via Oxygen Release to Elucidate the Formation Mechanism of Closed Pores.

ACS Appl Mater Interfaces

National Energy Metal Resources and New Materials Key Laboratory Engineering Research Center of the Ministry of Education for Advanced Battery Materials Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy School of Metallurgy and Environment, Central South University, Changsha 41008

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hard carbon (HC), recognized as the most promising anode material for sodium-ion batteries (SIBs), exhibits multiple forms of sodium storage (adsorption on graphitic layers, insertion between graphitic sheets, and filling in closed pores). Low initial coulombic efficiency (ICE) and low plateau region capacity are the main issues with HC, and it is necessary to understand the evolution laws of graphitic layers and closed pores. Here, we regulate the structure of graphitic layers by deliberately changing the oxygen content in HC materials and reveal the mechanism of formation of closed pores. Additionally, the density functional theory (DFT) calculation results provide crucial evidence for the promotion of interlayer spacing increase by the introduction of oxygen atoms into the graphitic layers. The improved sample with the largest number of closed pores (5.16 × 10 g) displays the largest plateau capacity (218.8 mAh g), proportion (76.0%), ICE (84.8%), and excellent kinetic performance (, = 1.26 × 10 cm s, , = 3.72 × 10 cm s). This work reveals the structural regulation mechanism of HC by adjusting the oxygen content and introduces a strategy to develop HC for high-performance SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c12701DOI Listing

Publication Analysis

Top Keywords

graphitic layers
20
closed pores
20
hard carbon
8
oxygen content
8
graphitic
6
layers
5
closed
5
pores
5
precisely regulating
4
regulating graphitic
4

Similar Publications

Thermally stable and highly wetted asymmetric porous nanocellulose/poly(m-phenylene isophthalamide) composite separators for high-performance lithium-ion batteries.

Int J Biol Macromol

September 2025

Jiangsu Provincial Key Lab for The Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.

Aramid films are potential separator candidates for high-safety lithium-ion batteries (LIBs) due to their inherent flame retardancy and outstanding thermal stability. However, both weak liquid electrolyte wettability and poor mechanical properties of aramid separators for lithium-ion batteries result in low ionic conductivity and unsatisfactory electrochemical performance for LIBs. Herein, a novel asymmetric porous composite separator composed of a relatively dense nanocellulose (CNC) layer and a porous poly(m-phenylene isophthalamide) (PMIA) supporting layer has been fabricated by using a water-induced phase conversion process.

View Article and Find Full Text PDF

Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.

View Article and Find Full Text PDF

Iron-carbon materials have emerged as promising heterogeneous Fenton-like catalysts for the removal of emerging organic contaminants. However, their practical applications are substantially hindered by complex preparation procedures and irreversible deactivation of iron centers. Herein, a novel double-layer core-shell catalyst Fe@FeC@Graphite (Fe-CTS-3000) is one-step synthesized by a high-temperature carbothermal shock (CTS) strategy.

View Article and Find Full Text PDF

Precisely Regulating the Graphitic Layers of Hard Carbon via Oxygen Release to Elucidate the Formation Mechanism of Closed Pores.

ACS Appl Mater Interfaces

September 2025

National Energy Metal Resources and New Materials Key Laboratory Engineering Research Center of the Ministry of Education for Advanced Battery Materials Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy School of Metallurgy and Environment, Central South University, Changsha 41008

Hard carbon (HC), recognized as the most promising anode material for sodium-ion batteries (SIBs), exhibits multiple forms of sodium storage (adsorption on graphitic layers, insertion between graphitic sheets, and filling in closed pores). Low initial coulombic efficiency (ICE) and low plateau region capacity are the main issues with HC, and it is necessary to understand the evolution laws of graphitic layers and closed pores. Here, we regulate the structure of graphitic layers by deliberately changing the oxygen content in HC materials and reveal the mechanism of formation of closed pores.

View Article and Find Full Text PDF

Sr(Ⅱ) and Cs(Ⅰ) adsorbed by graphene synthesized from spent lithium-ion batteries anode materials via novelly electrochemical exfoliation.

J Environ Radioact

September 2025

Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China. Electronic address:

The discharge of nuclear wastewater into the sea may pose a significant environmental and health risk due to radionuclides such as Cs and Sr. Consequently, the efficient removal of these nuclides has emerged as a focal point in the field of radioactive wastewater treatment. Traditional restoration methods, which rely on physical and chemical interventions as well as bioremediation, are economically burdensome and unsuitable for large-scale restoration efforts.

View Article and Find Full Text PDF