Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial infection, which can trigger varieties of diseases and tens of thousands of deaths each year, poses serious threats to human health. Particularly, the new dilemma caused by biofilms is gradually becoming a severe and tough problem in the biomedical field. Thus, the strategies to address these problems are considered an urgent task at present. Micro/nanomotors (MNMs), also named micro/nanoscale robots, are mostly driven by chemical energy or external field, exhibiting strong diffusion and self-propulsion in the liquid media, which has the potential for antibacterial applications. In particular, when MNMs are assembled in swarms, they become robust and efficient for biofilm removal. However, there is a lack of comprehensive review discussing the progress in this aspect. Bearing it in mind and based on our own research experience in this regard, the studies on MNMs driven by different mechanisms orchestrated for antibacterial activity and biofilm removal are timely and concisely summarized and discussed in this work, aiming to show the advantages of MNMs brought to this field. In addition, an outlook was proposed, hoping to provide the fundamental guidance for future development in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202400349DOI Listing

Publication Analysis

Top Keywords

biofilm removal
12
biomedical field
8
antibacterial biofilm
4
removal strategies
4
strategies based
4
based micro/nanomotors
4
micro/nanomotors biomedical
4
field
4
field bacterial
4
bacterial infection
4

Similar Publications

() is one of the bacterial species capable of forming multilayered biofilms on implants. Such biofilms formed on implanted medical devices often require the removal of the implant in order to avoid sepsis or, in the worst case, even the death of the patient. To address the problem of unwanted biofilm formation, its first step, i.

View Article and Find Full Text PDF

Background And Objective: Traditional and planimetric plaque indices rely on plaque-disclosing agents and cannot quantify three-dimensional (3D) structures of dental biofilms. We introduce a novel computer-assisted method for evaluating and visualising plaque volume using intraoral scans (IOSs).

Materials And Methods: This was a 4-day, non-brushing, plaque-regrowth study (n = 15).

View Article and Find Full Text PDF

Microplastics (MPs) and the plastisphere they form pose substantial ecological risks in aquatic environments and wastewater treatment processes. As a unique niche, the evolution of plastisphere in anaerobic ammonium oxidation (anammox) systems remains poorly understood. This study investigated the physicochemical evolution of polyethylene terephthalate (PET) MPs and microbial succession within the plastisphere during a 30-day incubation with anammox granular sludge.

View Article and Find Full Text PDF

Self-regulating adaptability of biofilm microbiomes enhances manganese and ammonia removal in microbial electrochemical filters under dioxane exposure.

J Hazard Mater

September 2025

State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Understanding the stability and assemblage of biofilm microbiomes under oligotrophic conditions is critical for improving groundwater bioremediation. In this study, a novel microbial electrochemical filter (MEF) was developed to explore the impact of weak electrical stimulation on functional adaptability of biofilms under oligotrophic and 1,4-dioxane exposure conditions. Under 20 mg/L 1,4-dioxane stress, the MEF achieved 94.

View Article and Find Full Text PDF

Bacterial infections have become a major challenge to global public health security. In this study, based on the concept of green synthesis, three cerium dioxide (CeO)-calcium oxide (CaO) composites (CS-CeO@CaO, CT-CeO@CaO, and CTD-CeO@CaO) were developed using chemical hydrothermal (CS), chrysanthemum tea impregnation (CT), and residue impregnation (CTD). Eggshell-derived calcium oxide was used as the carrier, in combination with the functional components of chrysanthemum tea and its residue extract.

View Article and Find Full Text PDF