Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nontuberculous mycobacteria (NTM) infection diagnosis remains a challenge due to its overlapping clinical symptoms with tuberculosis (TB), leading to inappropriate treatment. Herein, we employed noninvasive metabolic phenotyping coupled with comprehensive statistical modeling to discover potential biomarkers for the differential diagnosis of NTM infection versus TB. Urine samples from 19 NTM and 35 TB patients were collected, and untargeted metabolomics was performed using rapid liquid chromatography-mass spectrometry. The urine metabolome was analyzed using a combination of univariate and multivariate statistical approaches, incorporating machine learning. Univariate analysis revealed significant alterations in amino acids, especially tryptophan metabolism, in NTM infection compared to TB. Specifically, NTM infection was associated with upregulated levels of methionine but downregulated levels of glutarate, valine, 3-hydroxyanthranilate, and tryptophan. Five machine learning models were used to classify NTM and TB. Notably, the random forest model demonstrated excellent performance [area under the receiver operating characteristic (ROC) curve greater than 0.8] in distinguishing NTM from TB. Six potential biomarkers for NTM infection diagnosis, including methionine, valine, glutarate, 3-hydroxyanthranilate, corticosterone, and indole-3-carboxyaldehyde, were revealed from univariate ROC analysis and machine learning models. Altogether, our study suggested new noninvasive biomarkers and laid a foundation for applying machine learning to NTM differential diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222504PMC
http://dx.doi.org/10.1038/s41598-024-66113-xDOI Listing

Publication Analysis

Top Keywords

machine learning
20
ntm infection
20
ntm
9
nontuberculous mycobacteria
8
infection diagnosis
8
potential biomarkers
8
differential diagnosis
8
learning models
8
machine
5
learning
5

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF