Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Esophageal squamous cell carcinoma (ESCC) is a deadly cancer with no clinically ideal biomarkers for early diagnosis. The objective of this study was to develop and validate a user-friendly diagnostic tool for early ESCC detection.

Methods: The study encompassed three phases: discovery, verification, and validation, comprising a total of 1309 individuals. Serum autoantibodies were profiled using the HuProt human proteome microarray, and autoantibody levels were measured using the enzyme-linked immunosorbent assay (ELISA). Twelve machine learning algorithms were employed to construct diagnostic models, and evaluated using the area under the receiver operating characteristic curve (AUC). The model application was facilitated through R Shiny, providing a graphical interface.

Results: Thirteen autoantibodies targeting TAAs (CAST, FAM131A, GABPA, HDAC1, HDGFL1, HSF1, ISM2, PTMS, RNF219, SMARCE1, SNAP25, SRPK2, and ZPR1) were identified in the discovery phase. Subsequent verification and validation phases identified five TAAbs (anti-CAST, anti-HDAC1, anti-HSF1, anti-PTMS, and anti-ZPR1) that exhibited significant differences between ESCC and control subjects (P < 0.05). The support vector machine (SVM) model demonstrated robust performance, with AUCs of 0.86 (95% CI: 0.82-0.89) in the training set and 0.83 (95% CI: 0.78-0.88) in the test set. For early-stage ESCC, the SVM model achieved AUCs of 0.83 (95% CI: 0.79-0.88) in the training set and 0.83 (95% CI: 0.77-0.90) in the test set. Notably, promising results were observed for high-grade intraepithelial neoplasia, with an AUC of 0.87 (95% CI: 0.77-0.98). The web-based implementation of the early ESCC diagnostic tool is publicly accessible at https://litdong.shinyapps.io/ESCCPred/ .

Conclusion: This study provides a promising and easy-to-use diagnostic prediction model for early ESCC detection. It holds promise for improving early detection strategies and has potential implications for public health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369250PMC
http://dx.doi.org/10.1038/s41416-024-02781-wDOI Listing

Publication Analysis

Top Keywords

machine learning
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
verification validation
8
esccpred machine
4
learning model
4
model diagnostic
4
diagnostic prediction
4
prediction early
4

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF