Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The treatment options for multiple myeloma (MM) have undergone significant transformation with the advent of immunotherapy. Novel therapies that focus on tumor antigens now drive advances in MM research. Bispecific antibodies (bsAbs) leverage revolutionary advances in bioengineering techniques and embody the second generation of antibody-based tumor therapy. Recent studies on bsAbs in relapsed/refractory MM cases have revealed remarkable efficacy and acceptable safety profiles. The approval of elranatamab and teclistamab represents the next step in the development of bsAbs for the treatment of MM. This review article addresses the antigen targeting, efficacy, safety, and strategies in the application of bsAbs against treatment-resistant MM, with a focus on clinical trials and real-world data.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2906216DOI Listing

Publication Analysis

Top Keywords

bispecific antibodies
8
multiple myeloma
8
antibodies multiple
4
myeloma advancements
4
advancements strategies
4
strategies increasing
4
increasing efficacy
4
efficacy treatment
4
treatment options
4
options multiple
4

Similar Publications

Enhance therapeutic efficacy of BiTE (HER2/CD3) for HER2- positive tumors through expression.

Int J Pharm X

December 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Bispecific T-cell engagers (BiTEs) are small-molecule antibodies that exhibits potent tumoricidal activity but suffer from a short plasma half-life. Mesenchymal stromal cells (MSCs) represent promising delivery vehicles for sustained therapeutic protein expression. In this study, we used human umbilical cord blood-MSCs (hUC-MSCs) as a delivery system to to secrete HER2/CD3 BiTE antibodies, thereby addressing the pharmacokinetic limitations of conventional BiTE therapies.

View Article and Find Full Text PDF

Objective: Chimeric antigen receptor T-cell immunotherapy (CAR-T) is a preferred treatment for relapsed or refractory (R/R) large B-cell lymphoma (LBCL). Several trials have evaluated CD20×CD3 bispecific antibodies (BsAbs) as subsequent therapy in R/R LBCL. This study aimed to investigate the efficacy of CD20×CD3 BsAbs (mosunetuzumab, glofitamab, odronextamab, and epcoritamab) in patients with LBCL who experienced relapse or refractory disease following CAR-T therapy.

View Article and Find Full Text PDF

Background: The programmed cell death protein 1 (PDCD1 or PD-1) is a key regulatory immune checkpoint and a major target for therapeutic intervention. In oncology, antibodies blocking the PD-1 pathway are used to activate immune cells to promote anti tumour immunity while in immune-mediated inflammatory diseases, PD-1 agonist molecules have the potential to achieve immune suppression. NK cells are a specialised population of innate lymphocytes able to recognize a large range of distressed cells including damaged tissues in autoimmune and inflammatory conditions.

View Article and Find Full Text PDF

Cancer vaccines in hematologic malignancy: A systematic review of the rational and evidence for clinical use.

Best Pract Res Clin Haematol

September 2025

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.

Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.

View Article and Find Full Text PDF

Bispecific T-cell engager therapy for multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

With upfront use of triplet- and quadruplet-based regimens coupled with autologous stem cell transplant (ASCT) and maintenance lenalidomide, a high proportion of multiple myeloma (MM) patients are achieving deep and durable responses. Yet, myeloma invariably relapses, with refractoriness to one or more drugs at first relapse. This therapeutic gap has been partially filled by T-cell engager (TCE) therapies that have demonstrated remarkable response rates and prolonged remissions in heavily pretreated patients with MM, providing off-the-shelf immunotherapy options leading to the U.

View Article and Find Full Text PDF