Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Precise semantic segmentation of microbial alterations is paramount for their evaluation and treatment. This study focuses on harnessing the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, aiming to improve disease detection accuracy under natural acquisition conditions.

Methods: Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-B5 - were thoroughly analyzed to enhance disease detection, targeting diseases such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot, Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted of 2,450 raw images, expanded to 4,574 augmented images. The Segment Anything Model integrated into the Roboflow annotation tool facilitated efficient annotation and dataset preparation.

Results: The results reveal that MiT-B0 demonstrates balanced but slightly overfitting behavior, MiT-B3 adapts rapidly with consistent training and validation performance, and MiT-B5 offers efficient learning with occasional fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently outperformed MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general.

Discussion: The findings provide key insights for researchers to select the most suitable encoder for disease detection applications, propelling the field forward for further investigation. The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208715PMC
http://dx.doi.org/10.3389/fpls.2024.1352935DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
12
disease detection
12
segmentation microbial
8
microbial alterations
8
precise semantic
8
mit-b3 mit-b5
8
leaf spot
8
powdery mildew
8
disease
5
alterations based
4

Similar Publications

Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?", we propose an affirmative solution. We analyze the learned attention patterns for camouflaged objects and introduce a robust zero-shot COS framework.

View Article and Find Full Text PDF

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF

Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.

Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.

View Article and Find Full Text PDF

GESur_Net: attention-guided network for surgical instrument segmentation in gastrointestinal endoscopy.

Med Biol Eng Comput

September 2025

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.

Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed.

View Article and Find Full Text PDF