98%
921
2 minutes
20
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00165 | DOI Listing |
Vaccine
September 2025
Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh.
Despite the therapeutic potential of the primary vaccine series, a lack of confidence in the COVID-19 booster vaccine poses a threat to public health and undermines its coverage at the national, regional, and global levels. This study aimed to understand COVID-19 booster vaccine confidence (CBVC) among Bangladeshi adults aged 18-49 and the potential predictors of CBVC. In line with STROBE guidelines, a face-to-face cross-sectional survey was conducted from June 15 to August 31, 2023 during the spread of the SARS-CoV-2 Omicron variant.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Family and Community Medicine, Penn State University College of Medicine, Hershey, PA, United States.
Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.
Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).
Unlabelled: The evolution of SARS-CoV-2 has resulted in antigenically distinct variants that challenge vaccine-induced immunity. The KP.2 monovalent mRNA vaccine was deployed in 2024 to address immune escape by emerging SARS-CoV-2 subvariants.
View Article and Find Full Text PDFExtensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.
View Article and Find Full Text PDF