98%
921
2 minutes
20
Advancements in imaging, computer vision, and automation have revolutionized various fields, including field-based high-throughput plant phenotyping (FHTPP). This integration allows for the rapid and accurate measurement of plant traits. Deep Convolutional Neural Networks (DCNNs) have emerged as a powerful tool in FHTPP, particularly in crop segmentation-identifying crops from the background-crucial for trait analysis. However, the effectiveness of DCNNs often hinges on the availability of large, labeled datasets, which poses a challenge due to the high cost of labeling. In this study, a deep learning with bagging approach is introduced to enhance crop segmentation using high-resolution RGB images, tested on the NU-Spidercam dataset from maize plots. The proposed method outperforms traditional machine learning and deep learning models in prediction accuracy and speed. Remarkably, it achieves up to 40% higher Intersection-over-Union (IoU) than the threshold method and 11% over conventional machine learning, with significantly faster prediction times and manageable training duration. Crucially, it demonstrates that even small labeled datasets can yield high accuracy in semantic segmentation. This approach not only proves effective for FHTPP but also suggests potential for broader application in remote sensing, offering a scalable solution to semantic segmentation challenges. This paper is accompanied by publicly available source code.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174727 | PMC |
http://dx.doi.org/10.3390/s24113420 | DOI Listing |
IEEE Trans Neural Netw Learn Syst
September 2025
In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.
View Article and Find Full Text PDFJ Korean Med Sci
September 2025
Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Korea.
Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.
View Article and Find Full Text PDFFront Plant Sci
September 2025
College of Big Data, Yunnan Agricultural University, Kunming, China.
Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.
Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.
Med Biol Eng Comput
September 2025
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.
Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.
View Article and Find Full Text PDF