Fe doping enhanced Cr(VI) adsorption efficiency of cerium-based adsorbents: Adsorption behaviors and inner removal mechanisms.

J Colloid Interface Sci

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, College of Environment and Safety Engineering, Qingdao 266042, PR China. Electronic address: jwpan@qust

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cerium-based adsorbents possessed unique advantages of valence variability and abundant oxygen vacancies in hexavalent chromium (Cr(VI)) adsorption, but high cost and unstable properties restricted their application in Cr(VI) contained wastewater treatment. Herein, a series of bimetallic adsorbents with different cerium/iron ratios (CeFe@C) were prepared by adding inexpensive Fe into Ce-based adsorbents (Ce@C), and the effect of Fe doping on adsorption properties of Ce@C for Cr(VI) was investigated thoroughly. Compared with pristine Ce@C, CeFe@C exhibited excellent removal performance for Cr(VI), and the improved maximum adsorption capacity reached 75.11 mg/g at 25℃. Benefiting from Fe doping, CeFe@C had good regeneration property, with only 25 % decrease after five adsorption-desorption cycles. Contents of trivalent cerium (Ce(III)) and oxygen vacancies (O) in bimetallic adsorbents were positively correlated with divalent iron (Fe(II)) doping, indicating that the formation of Ce(III) and surface defects on Ce@C could be effectively regulated by Fe doping. Density functional theory (DFT) calculation results further proved that the doped Fe enhanced the electron transfer effectively and lowered the energy barriers of Cr(VI) adsorption onto Ce@C surface, strengthening the reduction and complexation to Cr(VI). This study provides new insights for improving the Cr(VI) removal performance by modified Ce-based adsorbents, and further promotes the utilization potentiality of low-cost and low-toxicity Ce-based adsorbents in Cr(VI)-containing wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.036DOI Listing

Publication Analysis

Top Keywords

crvi adsorption
12
ce-based adsorbents
12
crvi
8
cerium-based adsorbents
8
oxygen vacancies
8
wastewater treatment
8
bimetallic adsorbents
8
removal performance
8
adsorbents
7
adsorption
6

Similar Publications

The low-carbon strategy mandates the sustainable remediation of hexavalent chromium (Cr(VI)) contamination, driving the demand for efficient eco-adsorbents. However, current research prioritizes adsorption performance, neglecting environmental trade-offs and quantum chemical mechanisms of Cr(VI) adsorption. Here, we pioneered the first density functional theory (DFT) exploration of Cr(VI) adsorption mechanisms across chitosan (CS), polydopamine (PDA), UiO-66-NH, and polyethylenimine.

View Article and Find Full Text PDF

In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.

View Article and Find Full Text PDF

Magnetic nitrogen-containing carbon (Co/NC) is prepared by one-step carbonization of ZIF-67, reducing the pore blockage caused by the extra addition of magnetic particles and element doping. Co/NC-800-2 has a relatively high specific surface area, abundant nitrogen-containing functional groups, and sufficient magnetization intensity, achieving a Cr(VI) adsorption capacity of 85.46 mg·g at 30 °C.

View Article and Find Full Text PDF

In this study, a novel As(V) ion-imprinted and 4-picolinic acid (4-PA)-grafted porous diatomite (DE)-based adsorbent (As(V)-IID) was prepared by using the surface ion imprinting technique. The results of the selective adsorption experiment show that the adsorption capacity of As(V) on As(V)-IID reaches 62.78 mg/g in a solution with an initial As(V) concentration of 25 mg/L and a pH value that is near pH 4.

View Article and Find Full Text PDF

Introduction: Heavy metal pollution poses significant food safety risks. To address this, a composite hydrogel composed of hydrotalcite and alginic acid was developed for adsorbing cationic heavy metal pollutants prevalent in food-related wastewater.

Methods: The composite hydrogel was synthesized via hydrothermal methods and chemically crosslinked with calcium ions.

View Article and Find Full Text PDF