98%
921
2 minutes
20
Aim: To develop a non-invasive prenatal test for beta-hemoglobinopathies based on analyzing maternal plasma by using next generation sequencing.
Methods: We applied next generation sequencing (NGS) of maternal plasma to the non-invasive prenatal testing (NIPT) of autosomal recessive diseases, sickle cell disease and beta-thalassemia. Using the Illumina MiSeq, we sequenced plasma libraries obtained via a Twist Bioscience probe capture panel covering 4 Kb of chromosome 11, including the beta-globin (HBB) gene and >450 genomic single-nucleotide polymorphisms (SNPs) used to estimate the fetal fraction (FF). The FF is estimated by counting paternally transmitted allelic sequence reads present in the plasma but absent in the mother. We inferred fetal beta-globin genotypes by comparing the observed mutation (Mut) and reference (Ref) read ratios to those expected for the three possible fetal genotypes (Mut/Mut; Mut/Ref; Ref/Ref), based on the FF.
Results: We bioinformatically enriched the FF by excluding reads over a specified length via in-silico size selection (ISS), favoring the shorter fetal reads, which increased fetal genotype prediction accuracy. Finally, we determined the parental HBB haplotypes, which allowed us to use the read ratios observed at linked SNPs to help predict the fetal genotype at the mutation site(s). We determined HBB haplotypes via Oxford Nanopore MinION sequencing of a 2.2 kb amplicon and aligned these sequences using Soft Genetics' NextGENe LR software.
Conclusion: The combined use of ISS and HBB haplotypes enabled us to correctly predict fetal genotypes in cases where the prediction based on variant read ratios alone was incorrect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157249 | PMC |
http://dx.doi.org/10.3325/cmj.2024.65.180 | DOI Listing |
Vox Sang
September 2025
Blood Group Genetics Laboratory, Irish Blood Transfusion Service, Dublin, Ireland.
Background And Objectives: The discovery of circulating fetal DNA in maternal plasma enabled non-invasive prenatal testing (NIPT) for targeted anti-D prophylaxis. In 2019, Ireland implemented an in-house test to guide this care. Here, we report 6 years of service.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Medical Genetics, Jiangxi Maternal and Child Health Hospital, Nanchang, China.
Objective: The aim of this study was to determine the diagnostic value of prenatal chromosomal microarray analysis (CMA) for fetuses at high risk for various conditions on chromosomal abnormalities.
Methods: In the study, 8,560 clinical samples were collected from pregnant women between February 2018 and June 2022, including 75 villus, 7,642 amniotic fluid, and 843 umbilical cord blood samples. All samples were screening for chromosomal abnormalities using both CMA and karyotyping.
Int J Gynaecol Obstet
September 2025
Department of Obstetrics and Gynaecology, The National Maternity Hospital, Dublin, Ireland.
J Cyst Fibros
September 2025
Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA.
Recent improvements in cell-free DNA technology have enabled non-invasive prenatal testing (NIPT) to screen for fetal single-gene autosomal recessive conditions from maternal blood as early as the first trimester. This technique can determine the fetal risk for cystic fibrosis (CF) with a single blood sample from a pregnant person without the need for a partner sample, which is required for traditional carrier screening. A retrospective review of 100,106 consecutive general-risk pregnant patients who underwent CF carrier screening was completed.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
September 2025
Department of Clinical Genetics, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
Objective: To evaluate the performance of non-invasive prenatal testing (NIPT) in vanishing-twin and multiple pregnancies.
Methods: This study was conducted as part of the TRIDENT-2 study, in which NIPT was offered as a first-tier screening test to women with a multiple pregnancy or vanishing-twin pregnancy between 1 June 2020 and 31 March 2023 in The Netherlands. Abnormal NIPT results were investigated by follow-up invasive prenatal testing and/or postnatal genetic testing.