98%
921
2 minutes
20
Rosa laxa Retz. is an unexplored Rosaceae plant in Xinjiang, China, and its flower is traditionally used in Kazak to treat the common cold, fever, and epileptic seizures and lessen the effects of aging. In the present study, the pharmacognostic profiles, physicochemical properties, phytochemical characteristics, and in vitro antioxidant potency of Rosa laxa Retz. flos (RLF) were presented. In the pharmacognostic evaluation of RLF, organoleptic characteristics, internal structures, and powder information were observed, and physicochemical parameters, including moisture content, ash, pH value, swelling degree, and extractives were examined. The quantitative analysis of the chemical composition of four different polar extracts of RLF showed that the aqueous part had the highest total triterpene acid, flavonoid, and polyphenol content (4.50 ± 0.04 mg/g, 50.56 ± 0.03 mg/g, and 60.20 ± 0.09 mg/g, respectively). A high-performance liquid chromatography (HPLC)-diode array detector (DAD) method was established and the contents of gallic acid, ellagic acid, astragalin, and tiliroside in RLF were determined simultaneously. In the set concentration range, the linear relationship among the four components was good (r > 0.999), the average recoveries were 97.36%-100.54%. The contents of gallic acid, ellagic acid, astragalin, and tiliroside in RLF samples were (9.46 ± 2.31) mg/g, (10.60 ±0.75) mg/g, (1.13 ± 2.50) mg/g, and (1.11 ± 2.65) mg/g, respectively. The types of its secondary metabolites were determined by fluorescence, color reaction by chemical solvent method, and ultraviolet-visible (UV-Vis) spectroscopy. The functional groups of its secondary metabolites were determined by Fourier transform infrared (FTIR) spectroscopy. Results showed that RLF contains a variety of secondary metabolic products, including flavonoids, phenolic acid, glycoside, and organic acid. TLC identification showed it contains ursolic acid, β-sitosterol, tiliroside, astragalin, isoquercitrin, kaempferol-3-O-rutinoside, gallic acid, and ellagic acid. The in vitro antioxidant activity of different polar parts of RLF was investigated by DPPH, ABTS, and reduction performance experiments. The aqueous extract had the strongest antioxidant capacity, consistent with the high content of triterpene acids, flavonoids, and polyphenolic compounds. These findings will provide critical information for the study of quality standards and medicinal value of RLF and its extracts, justify its usage in traditional medicinal systems, and encourage the use of this plant in disease prevention and treatment. Its phytochemical composition and pharmacological studies need to be explored in future. RESEARCH HIGHLIGHTS: Optical microscope and scanning electron microscope (SEM) were used to observe the morphology, and microstructure of Rosa laxa Retz. flos (RLF). The physicochemical properties, fluorescence and phytochemical composition of four different polar extracts of RLF were analyzed by UV-Vis and FTIR. Determination of total triterpenic acid, total flavonoids, and total polyphenols in four different polar extracts of RLF by UV spectrophotometry. A high-performance liquid chromatography (HPLC)-diode array detector (DAD) method was established and the contents of gallic acid, ellagic acid, astragalin, and tiliroside in RLF were determined simultaneously. TLC confirmed that RLF contains ursolic acid, β-sitosterol, tiliroside, astragalin, isoquercitrin, kaempferol 3-rutinoside, gallic acid, and ellagic acid. The in vitro antioxidant activity of RLF was studied by DPPH, ABTS, and reducing ability experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.24622 | DOI Listing |
Anal Chem
September 2025
Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.
Current colorimetric sensing arrays for antioxidant detection often struggle with discrimination due to cross-reactive signals from individual nanozymes. These signals are typically modulated by external factors such as pH or chromogenic substrates, offering limited kinetic and mechanistic diversity. To overcome this, we present a novel triple-channel colorimetric sensing array utilizing two distinct single-atom nanozymes (Cu SA and Fe SA) and one dual-atom nanozyme (CuFe DA).
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj
For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.
View Article and Find Full Text PDFBioresour Technol
September 2025
Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:
The regulation of humic substance formation during aerobic fermentation of organic solid waste has gradually become a research hotspot in related fields. The metabolic byproducts of lignocellulose have the potential to act as precursors for the synthesis of humic substances. This study, grounded in a robust framework of metabolic intermediate indicators, selected representative pure phenolic acid intermediates to conduct condensation experiments.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand. Electronic address:
Starch-lipid complexes are classified as resistant starch (RS) type 5 and their formation can be enhanced through the synergistic action of fatty acids and phenolic compounds. This study investigated the effects of stearic acid, lauric acid, gallic acid, and quercetin on V-amylose complex formation, physicochemical properties, crystallinity, and digestibility of rice starch. The addition of these compounds transformed starch crystallinity from A-type to mixed A- and V-type forms, with relative crystallinity increasing dramatically from 11.
View Article and Find Full Text PDFFood Chem
August 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
The detection of Ethyl maltol (EM), Gallic acid (GA), and Rotenone in food is critical for preventing foodborne diseases. This study developed a new terbium-based metal-organic framework (Tb-MOF) for ultrasensitive multi-target detection in complex food matrices leveraging competitive absorption mechanism. It is the first MOF-based sensor detecting EM with LOD of 0.
View Article and Find Full Text PDF