Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages.

J Pharmacol Exp Ther

Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York (F.D.); Departments of Anesthesiology (F.D., M.K.) and Pathology (J.D.H.) and Biological Mass Spectrometry Facility, (J.D.H.), Renaissance School of Medicine, Stony Brook University, Stony Brook, New York martin.ka

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. SIGNIFICANCE STATEMENT: This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493448PMC
http://dx.doi.org/10.1124/jpet.123.002006DOI Listing

Publication Analysis

Top Keywords

fabp5
14
fatty acid
12
acid binding
12
binding protein
12
protein fabp5
12
fabp5 deletion
12
proteomic phosphoproteomic
12
signaling pathways
8
pathways modulated
8
macrophages
8

Similar Publications

Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.

View Article and Find Full Text PDF

High fat diet (HFD)-induced obesity increases the risk and severity of psoriasis. However, the immunoregulatory effects of different HFDs on psoriasis pathogenesis remains poorly understood. Here, mimicking human dietary fat profiles, four HFDs-saturated, monounsaturated, omega-6, and omega-3 fats-were designed and used to induce obesity in mice.

View Article and Find Full Text PDF

Obesity is strongly associated with triple-negative breast cancer (TNBC). A better understanding of the molecular mechanisms driving obesity-induced TNBC progression could facilitate development of precision dietary intervention strategies. Here, we used murine models of obesity induced by different high-fat diets (HFDs) to examine their impact on TNBC progression.

View Article and Find Full Text PDF

Fatty acid-binding proteins (FABPs) play a pivotal role in the malignant progression of numerous human cancers. However, the precise functions of FABP family genes in different cancer types remain incompletely elucidated. The data used in this study were acquired from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

A Conserved FABP5 Macrophage Subset Promotes Fibrosis and Carcinogenesis in Advanced Liver Disease.

Liver Int

September 2025

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Background And Aims: The relationship between chronic liver disease and liver cancer remains poorly understood, and treatment options for advanced liver disease remain limited. This study aims to elucidate the dynamic evolution of cellular and molecular alterations from normal liver to diseased liver.

Methods: Single-cell RNA sequencing was performed to profile the dynamic cellular variations from normal liver to diseased liver.

View Article and Find Full Text PDF