Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The number of published literature on the effect of ultrasonic cavitation and advanced oxidation pretreatment on the dewatering performance of anaerobically digested sludge is very limited. This study aims at determining the optimum operating conditions of large-scale filtering centrifuges in wastewater treatment plants. The optimum dose of hydrogen peroxide, ultrasonic power, ultrasonic duration, ultrasonic pulse and particle size distribution for improved dewatering performance were determined in this study. In addition, shear stress-shear rate and viscosity-shear rate rheograms were developed to show the rheological flow properties for varying ultrasonic power and treatment duration. Optimum sonication power, time, pulse and amplitude were determined to be 14 W, 1 min, 55/5 and 20%, respectively. At a pH of 6.8, the optimum concentration of hydrogen peroxide was found to be 43.5 g/L. The optimum hydrogen peroxide dose in the combined conditioning experiments was determined to be 500 mg/L at a pH of 3. Under these optimum conditions, capillary suction time was reduced significantly by 71.1%. This study helps to reduce polymer consumption and provides the optimum pretreatment and dewatering operating conditions, and better monitoring and control in the dewatering unit has significant impact in the overall economy of wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2024.132DOI Listing

Publication Analysis

Top Keywords

dewatering performance
12
hydrogen peroxide
12
ultrasonic cavitation
8
cavitation advanced
8
advanced oxidation
8
pretreatment dewatering
8
operating conditions
8
wastewater treatment
8
treatment plants
8
ultrasonic power
8

Similar Publications

Molecular-scale mechanism of extracellular protein over-flocculation for sewage sludge dewatering by polyacrylamide.

Water Res

September 2025

Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Flocculation is one of the most common treatment processes for sludge dewatering, representing the last line of solid-liquid separation for sludge dewatering. However, the macroscopic and descriptive theories of polyacrylamide (PAM) -based over-flocculation have limited the optimization of its performance in the dewatering of sewage sludge, whose water is typically trapped within a three-dimensional gel matrix governed by extracellular polymeric substances (EPS). This study focuses on loosely bound EPS (LB-EPS) to uncover molecular-level mechanism of excessive PAM dosing.

View Article and Find Full Text PDF

Municipal sludge, characterized by its high-water-content and viscous texture, poses significant environmental challenges due to inefficient dewatering and poor flowability. The freeze-thaw (F/T) method is an effective and environmentally friendly pretreatment approach. It is crucial to apply rheological analysis to examine the influence of refrigeration temperature on dewatering effects and to investigate the underlying mechanisms.

View Article and Find Full Text PDF

Enhanced Tangential Flow Filtration of Precipitated Proteins Using Screened Membrane Cassettes.

Membranes (Basel)

August 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

Background: Recent advances in cell culture have led to significant increases in monoclonal antibody (mAb) titers, opening a new window of opportunity for developing a fully continuous downstream purification process based on the selective precipitation of the mAb from harvested cell culture fluid, with the precipitate dewatered and washed using single-pass tangential flow filtration (SPTFF) with microfiltration membranes.

Methods: Experiments were performed with precipitates of human serum immunoglobulin G formed using ZnCl and polyethylene glycol, both with and without added disodium malonate. SPTFF was conducted in both hollow fiber and screened cassette modules, with the critical flux identified using flux-stepping experiments.

View Article and Find Full Text PDF

Exploring lignin nanoparticle incorporation to develop multifunctional cellulose nanofibril films for active packaging.

Int J Biol Macromol

August 2025

Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, SP, Brazil. Electronic address:

Films of cellulose nanofibrils (CNF) incorporating lignin nanoparticles (LNPs) were synthesized and evaluated for their potential as active and multifunctional packaging materials. The barrier and functional properties of the films (UV-blocking, antimicrobial, and antioxidant activities) were investigated alongside comprehensive chemical, morphological, mechanical, thermal, optical, and surface characterizations. LNPs self-assembled on the film surface during filtration-based dewatering, influencing surface roughness and wettability.

View Article and Find Full Text PDF

Early detection of leakage in foundation pit retaining structures during excavation is critical for ensuring both construction safety and the integrity of adjacent buildings. Conventional surface direct current methods suffer from poor resolution, low interference to resistance, and limited capability in pinpointing leakage locations. To achieve accurate leakage identification and enhance the quality control of major engineering projects, this study first establishes a coupled electrokinetic-steady electric field response mechanism by integrating the naturally occurring electric field from electrokinetic effects in leakage zones with artificial steady electric fields during pumping tests.

View Article and Find Full Text PDF