Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2024.109946DOI Listing

Publication Analysis

Top Keywords

retinal damage
16
blue light
16
long- short-wavelength
12
light
12
light damage
12
damage
9
role parp-1
8
damage retina
8
short-wavelength light
8
red light
8

Similar Publications

The molecular mechanisms and therapeutic implications of PANoptosis in ischemic diseases.

Apoptosis

September 2025

Key Laboratory of Emergency and Trauma of the Ministry of Education, Department of Interventional Radiology and Vascular Surgery, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 31 Longhua Road, Longhua District, Haikou City, Hainan Province, China.

The singular forms of programmed cell death (PCD), including pyroptosis, apoptosis, and necroptosis, are inadequate for comprehensively elucidating the complex pathological mechanisms underlying ischemic diseases. PANoptosis is a unique lytic, innate immune, and inflammatory cell death pathway, initiated by innate immune sensors and driven by caspases and RIPKs through PANoptosome complexes. In diseases like cerebral ischemia, retinal ischemia, myocardial ischemia, renal ischemia, and spinal cord ischemia, targeting key regulatory factors of PANoptosis can help mitigate tissue damage.

View Article and Find Full Text PDF

The role of lipid metabolism disorder in the progression and treatment of ocular vascular diseases.

Surv Ophthalmol

September 2025

Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang 261041, China.

Lipid metabolism plays a critical role in maintaining normal physiological functions and is strongly linked to the pathogenesis of ocular vascular diseases. This review examines how disorders of lipid metabolism drive progression in ocular vascular diseases, including diabetic retinopathy, age-related macular degeneration, retinal vascular occlusive diseases, and retinopathy of prematurity. These disorders are classified as a related group due to their common feature of impaired ocular vascularization.

View Article and Find Full Text PDF

Ocular toxicity and potential mechanism of nanomaterials: An issue worthy of investigation.

Ecotoxicol Environ Saf

September 2025

Department of Orthordontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China. Electronic address: 20

Nanomaterials are widely used. The gases emitted from industrial manufacturing contain nanoparticles, which increases the chance of nanomaterials coming into contact with the eyes. Nanomaterials may cause damage to the eyeball wall and eye contents, manifested as keratitis, neovascularization of the iris, vitreous inflammation, retinitis, etc.

View Article and Find Full Text PDF

Purpose: To evaluate superficial microvascular deficits of glaucomatous eyes with wide-field optical coherence tomography angiography (OCTA) and Euclidian distance (ED) analysis.

Design: Cross-sectional study.

Subjects: Swept-source OCTA (SS-OCTA) images of healthy and glaucomatous eyes.

View Article and Find Full Text PDF

Blue light pollution induces dry eye by damaging conjunctival stem cells through cAMP-PKA-Pax6 signaling pathway.

Ecotoxicol Environ Saf

September 2025

Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:

Purpose: Blue light exposure constitutes a risk factor for dry eye. The research explores the influence of conjunctival stem cells (CjSCs) by blue light, elucidating the pathogenesis of blue light-induced dry eye.

Materials And Methods: Primary SD rat CjSCs and rats were irradiated with blue light at 460 nm.

View Article and Find Full Text PDF