Overview of the environmental risks of microplastics and their controlled degradation from the perspective of free radicals.

Environ Pollut

Key Laboratory of Comprehensive Treatment and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China. Electronic address:

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to the significant environmental threat posed by microplastics (MPs) of varying properties, MPs research has garnered considerable attention in current academic discourse. Addressing MPs in river-lake water systems, existing studies have seldom systematically revealed the role of free radicals in the aging/degradation process of MPs. Hence, this review aims to first analyze the pollution distribution and environmental risks of MPs in river-lake water systems and to elaborate the crucial role of free radicals in them. After that, the study delves into the advancements in free radical-mediated degradation techniques for MPs, emphasizing the significance of both the generation and elimination of free radicals. Furthermore, a novel approach is proposed to precisely govern the controlled generation of free radicals for MPs' degradation by interfacial modification of the material structure. Hopefully, it will shed valuable insights for the effective control and reduction of MPs in river-lake water systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124227DOI Listing

Publication Analysis

Top Keywords

free radicals
20
mps river-lake
12
river-lake water
12
water systems
12
environmental risks
8
role free
8
mps
7
free
6
radicals
5
overview environmental
4

Similar Publications

Convergent Paired Electrolysis Enables Electrochemical Halogen-Atom Transfer-Mediated Alkyl Radical Cross-Coupling.

J Am Chem Soc

September 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

The direct cross-coupling of unactivated alkyl halides with aryl or heteroaryl partners remains a fundamental challenge in synthetic chemistry due to their inertness and propensity for side reactions. Herein, we report a transition-metal-free electrochemical halogen-atom transfer strategy that enables efficient alkyl radical cross-coupling via convergent paired electrolysis. In this system, anodically generated α-aminoalkyl radicals mediate the activation of alkyl iodides, while aryl/heteroaryl aldehydes or nitriles undergo cathodic reduction to afford persistent ketyl radical anions or aryl radical anions.

View Article and Find Full Text PDF

Radiotherapy, a prevalent and effective treatment for various malignancies, often causes collateral damage to normal skin and soft tissues in the irradiated area. To address this, we developed a novel approach combining SVFG-modified adipose-derived high-activity matrix cell clusters (HAMCC) with concentrated growth factors (CGF) to enhance regeneration and repair of radiation-induced skin and soft tissue injuries. Our study included cellular assays, wound healing evaluations, and histological analyses.

View Article and Find Full Text PDF

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF