98%
921
2 minutes
20
The study of titanium dioxide (TiO) in the brookite phase is gaining popularity as evidence has shown the efficient photocatalytic performance of this less investigated polymorph. It has been recently reported that defective anisotropic brookite TiO nanorods display remarkable substrate-specific reactivity towards alcohol photoreforming, with rates of hydrogen production significantly (18-fold) higher than those exhibited by anatase TiO nanoparticles. To elucidate the basic photo-physical mechanisms and peculiarities leading to such an improvement in the photoactive efficiency, we investigated the recombination processes of photoexcited charge carriers in both stoichiometric and reduced brookite nanorods photoluminescence excitation spectroscopy in controlled environment. Through an investigation procedure employing both supragap and subgap excitation during successive exposure to oxidizing and reducing gaseous agents, we firstly obtained an interpretation scheme describing the main photoluminescence and charge recombination pathways in stoichiometric and reduced brookite, which includes information about the spatial and energetic position of the intragap states involved in photoluminescence mechanisms, and secondly identified a specific photoluminescence enhancement process occurring in only reduced brookite nanorods, which indicates the injection of a conduction band electron during ethanol photo-oxidation. The latter finding may shed light on the empirical evidence about the exceptional reactivity of reduced brookite nanorods toward the photo-oxidation of alcohols and the concomitant efficiency of photocatalytic hydrogen generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr00593g | DOI Listing |
Mikrochim Acta
September 2025
College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.
A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China. Electronic address:
Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.
View Article and Find Full Text PDFMater Today Bio
October 2025
Key Laboratory for Green Chemical Engineering Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
Controlled drug delivery has attracted significant attention because of its ability to release therapeutic agents at specific times and locations. Titanium dioxide nanotubes (TNTs), which are known for their unique tubular morphology, large surface area and excellent biocompatibility, have been widely investigated as drug carriers. However, their application in light-induced drug release is limited by their reliance on ultraviolet (UV) light.
View Article and Find Full Text PDFJ Nanobiotechnology
August 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. songwe
The regulatory role of migrasomes (Migs) has attracted growing attentions recently. However, most of the reports only focus on the influence of donor cells on Migs contents, regarding the substrate information. In the present study, the bone marrow mesenchymal stem cells (BMSCs) derived Migs were investigated on titania micropits/nanotubes (MNT) under different anodization voltages.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Electrical and Electronic Engineering (EEE), University of Dhaka (DU) Dhaka 1000 Bangladesh
Metalenses have garnered significant attention for their remarkable ability to precisely focus light while obviating the inconvenience and intricacy associated with conventional curved lenses. Identifying the best response for these phase gradient optical devices necessitates intensive trial and error analysis of meta-atoms with various shapes, materials and dimensions. In this work, we present an artificial intelligence-based framework to predict the highly skewed, complex transmission and phase responses of the constituent nanorods.
View Article and Find Full Text PDF