98%
921
2 minutes
20
Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The was dominant in Barkol Saline Lake. The abundance of and in the degraded areas was lower than in the lake sediment, while , , and showed an opposite trend. The βNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111964 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1358222 | DOI Listing |
J Appl Physiol (1985)
September 2025
Department of Human Physiology and Nutrition, William J. Hybl Sport Medicine and Performance Center, University of Colorado Colorado Springs, Colorado Springs, CO, USA.
Chronic exposure to high altitude leads to increases in hemoglobin mass (Hbmass), which may improve exercise performance and decrease acute mountain sickness (AMS) symptoms. We evaluated the influence of intravenous iron or erythropoietin (EPO) treatment on Hbmass, exercise performance, and AMS during a 14-day exposure to 3094 m. Thirty-nine participants (12F) completed the study conducted in Eugene, Oregon (sea level (SL), 130 m) and Leadville, Colorado (3094 m).
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Ecology and Environment, Xinjiang University, Urumqi 830017, China.
Desert ecosystems pose extreme challenges to plant survival. This study explores the adaptive strategies of two xerophytic halophytes, and , in Xinjiang's Ebinur Lake wetland, focusing on their plant-soil-microbe (PSM) coupling systems across desert gradients. Results revealed significant interspecific and gradient-dependent differences in plant functional traits: showed high growth plasticity with a fast-growth strategy, while adopted a conservative strategy.
View Article and Find Full Text PDFJ Fish Dis
September 2025
College of Fisheries, Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, China.
Aeromonas hydrophila can cause disease in various aquatic animals, but there exist no effective alternatives to control its outbreak. In this study, diseased largemouth bass were collected from the breeding farm Lake Dahong (Chongqing, China), a strain SK-2 was isolated and identified as A. hydrophila.
View Article and Find Full Text PDFMicroorganisms
August 2025
State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China.
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant-microbe interactions in extreme environments and developing effective strategies for saline-alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted species (, , , and ) from the Yuncheng Salt Lake region in China using high-throughput sequencing. Cultivable salt-tolerant plant growth-promoting rhizobacteria (PGPR) were isolated and characterized to identify functional genes related to stress resistance.
View Article and Find Full Text PDFSci Rep
August 2025
Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
Copper pollution in hypersaline environments poses a significant challenge due to the inefficiency of conventional bioremediation strategies under high salinity and metal stress. Halophilic archaea represent a promising solution for heavy metal removal in saline environments due to their biocompatibility and cost-effectiveness. Here, we investigated the copper removal potential of a Halalkalicoccus sp.
View Article and Find Full Text PDF