98%
921
2 minutes
20
Resistant starch (RS) is important in controlling diabetes. The primary objective of this study is to examine the impact of molecular conformation on the enzymatic hydrolysis efficiency of starch by α-amylase. And the interactions between starch molecules with different conformations and α-amylase were analysed by using molecule dynamics simulation and molecular docking. It was found, the natural conformational starch molecule was hydrolysed from the middle of the starch chain by α-amylase, producing polysaccharides. The bent PS-conformational starch molecules with multiple O-O intramolecular hydrogen bonds produced by high-pressure was hydrolysed from the head of the starch chain to produce glucose, which is not conducive to RS formation. The stretched H-conformation without intramolecular hydrogen bonds produced by heat treatment was not hydrolysed by α-amylase. However, it occupied the active groove and formed strong interactions with α-amylase, which prevented other starch molecules from binding to α-amylase, thus reducing hydrolysis efficiency. Moreover, the total interaction energies between the three starch molecules and α-amylase were approximately 78 kJ/mol. And several hydrogen bonds were formed between the starch molecules and α-amylase, which provides evidence for the continuous sliding hydrolysis hypothesis of α-amylase. Moreover, these results provide an important reference for elucidating the mechanism of RS formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132570 | DOI Listing |
Mikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un
Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technol
Aiming at the problems such as large dust in each production process of open-pit mines, insufficient water resistance of the curing layer of dust control materials, and poor mechanical strength, this research applied the network generated by Schiff base reaction between oxidized starch (OS) and gelatin (GEL) as the basis, and combined with polyvinyl alcohol (PVA) and calcium chloride (CaCl). This material improves the problem of poor dust suppression effect caused by the environment of open-pit coal mines. It was found that the large number of amino groups contained in GEL attack the carbon atoms in the carbonyl group of OS to form carbon-nitrogen double bonds, generating Schiff bases as the crosslinking network, which enhanced the water resistance of the polymers.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Plant phenotypes exhibit high plasticity, with shoot branching as a prime example and a key factor influencing yield in many species. The availability of photosynthates is a critical determinant of shoot branching (or tillering in monocots). Carbohydrates, primarily in the form of sucrose, are synthesised in actively photosynthetic leaves (sources) and transported to non-photosynthetic tissues (sinks), such as tiller buds.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Clinical Medical Center of Tissue Engineering and Regeneration, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China. Electronic address:
An ideal wound dressing should possess multiple functions such as self-healing, antibacterial properties, and biodegradability. To achieve this goal, this study utilized the host-guest interaction between adamantane groups and β-cyclodextrin, as well as the Diels-Alder reaction between furan groups and maleimide groups, to prepare a novel dual-network hydrogel (DN-Gel) based on starch and hyaluronic acid. The preparation conditions of DN-Gel were optimized through single-factor experiments.
View Article and Find Full Text PDF