Endoplasmic reticulum protein ALTERED MERISTEM PROGRAM 1 negatively regulates senescence in Arabidopsis.

Plant Physiol

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant senescence is a highly regulated developmental program crucial for nutrient reallocation and stress adaptation in response to developmental and environmental cues. Stress-induced and age-dependent natural senescence share both overlapping and distinct molecular responses and regulatory schemes. Previously, we have utilized a carbon-deprivation (C-deprivation) senescence assay using Arabidopsis (Arabidopsis thaliana) seedlings to investigate senescence regulation. Here we conducted a comprehensive time-resolved transcriptomic analysis of Arabidopsis wild type seedlings subjected to C-deprivation treatment at multiple time points, unveiling substantial temporal changes and distinct gene expression patterns. Moreover, we identified ALTERED MERISTEM PROGRAM 1 (AMP1), encoding an endoplasmic reticulum protein, as a potential regulator of senescence based on its expression profile. By characterizing loss-of-function alleles and overexpression lines of AMP1, we confirmed its role as a negative regulator of plant senescence. Genetic analyses further revealed a synergistic interaction between AMP1 and the autophagy pathway in regulating senescence. Additionally, we discovered a functional association between AMP1 and the endosome-localized ABNORMAL SHOOT3 (ABS3)-mediated senescence pathway and positioned key senescence-promoting transcription factors downstream of AMP1. Overall, our findings shed light on the molecular intricacies of transcriptome reprogramming during C-deprivation-induced senescence and the functional interplay among endomembrane compartments in controlling plant senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiae299DOI Listing

Publication Analysis

Top Keywords

plant senescence
12
senescence
11
endoplasmic reticulum
8
reticulum protein
8
altered meristem
8
meristem program
8
amp1
5
protein altered
4
program negatively
4
negatively regulates
4

Similar Publications

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF

Effect of Metschnikowia pulcherrima and 24-epibrassinolide on grape quality preservation and Botrytis control during postharvest.

Plant Physiol Biochem

August 2025

College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:

Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.

View Article and Find Full Text PDF

Exploring the tritrophic interactions between Araujia hortorum, Puccinia araujiae, and a mycoparasitic Cladosporium: implications for the biological control of moth plant.

Fungal Biol

October 2025

Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS) - CONICET, Camino La Carrindanga Km 7, Bahía Blanca, 8000, Argentina.

Tritrophic interactions involving host plants, fungal pathogens and mycoparasites play an important role in the dynamics of natural ecosystems. In this work, we investigate the impact of the rust fungus Puccinia araujiae on the growth of Araujia hortorum plants in the presence/absence of a mycoparasitic Cladosporium species identified here as Cladosporium sphaerospermum, supported by both morphological and molecular studies. The capacity of the latter to grow and reproduce at the expense of teliospores of the rust was confirmed through microscopic observations.

View Article and Find Full Text PDF

GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower () is a highly photosynthetic plant; here, a -homologues gene was identified from the sunflower genome by bioinformatics. To analyze the bio-function of , transgenic rice plants overexpressing () were constructed and characterized via phenotype.

View Article and Find Full Text PDF

Nitrogen addition substantially affects plant phenology in terrestrial ecosystems: a meta-analysis.

Front Plant Sci

August 2025

College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China.

Introduction: Phenology is a sensitive biological indicator of climate change. Increasing nitrogen (N) deposition has amplified phenological shifts, making their study across terrestrial ecosystems crucial for understanding global change responses. While existing research focuses on single ecosystems, comparative analyses are lacking.

View Article and Find Full Text PDF