Effect of luteolin on glioblastoma's immune microenvironment and tumor growth suppression.

Phytomedicine

Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, Liaoning Province 110001, China. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma is the most malignant and prevalent primary human brain tumor, and the immunological microenvironment controlled by glioma stem cells is one of the essential elements contributing to its malignancy. The use of medications to ameliorate the tumor microenvironment may give a new approach for glioma treatment.

Methods: Glioma stem cells were separated from clinical patient-derived glioma samples for molecular research. Other studies, including CCK8, EdU, Transwell, and others, supported luteolin's ability to treat glioma progenitor cells. Network pharmacology and molecular docking models were used to study the drug target, and qRT-PCR, WB, and IF were used to evaluate the molecular mechanism. Intracranial xenografts were examined using HE and IHC, while macrophage polarization was examined using FC.

Results: We originally discovered that luteolin inhibits glioma stem cells. IL6 released by glioma stem cells is blocked during medication action and inhibits glioma stem cell proliferation and invasion via the IL6/STAT3 signaling pathway. Additionally, luteolin inhibits the secretion of TGFβ1, affects the polarization function of macrophages in the microenvironment, inhibits the polarization of M2 macrophages in TAM, and further inhibits various functions of glioma stem cells by affecting the IL6/STAT3 signaling pathway, luteolin crosstalk TGFβ1/SMAD3 signaling pathway, and so on.

Conclusions: Through the suppression of the immunological microenvironment and inhibition of the IL6/STAT3 signaling pathway, our study determined the inhibitory effect of luteolin on glioma stem cells. This medication's dual inhibitory action, which has a significant negative impact on the glioma stem cells' malignant process, makes it both a viable anti-glioma medication and a candidate for targeted glioma microenvironment therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155611DOI Listing

Publication Analysis

Top Keywords

glioma stem
32
stem cells
24
signaling pathway
16
glioma
12
il6/stat3 signaling
12
immunological microenvironment
8
stem
8
luteolin inhibits
8
inhibits glioma
8
cells
7

Similar Publications

One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.

View Article and Find Full Text PDF

Paraspeckle protein NONO regulates active chromatin by allosterically stimulating NSD1.

Cell Rep

September 2025

Virginia Tech Fralin Biomedical Research Institute Cancer Research Center DC, Children's National Research & Innovation Campus, Washington, DC, USA; Department of Biomedical Sciences and Pathobiology (DBSP), Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Center

Nuclear receptor binding set domain protein 1 (NSD1) is a key histone methyltransferase that catalyzes di-methylation of lysine 36 of histone H3 (H3K36me2), essential for active chromatin domains. While the loss of NSD1 activity halts embryonic development and its aberrant gain drives oncogenesis in leukemia and glioma, the regulatory mechanisms remain poorly understood. Here, we uncover that NSD1 requires allosteric activation through the aromatic pocket of its Pro-Trp-Trp-Pro 2 (PWWP2) domain.

View Article and Find Full Text PDF

Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.

View Article and Find Full Text PDF

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the control GADPH western blots shown in Fig. 5D were strikingly simillar to three lanes in the GAPDH panel shown in Fig. 4D, even though the experimental conditions reported in these figure parts were different, suggesting that one of these figures may have been assembled incorrectly.

View Article and Find Full Text PDF

Glioblastoma (GBM) remains a major clinical challenge due to limited therapeutic success despite standard treatments including surgery, radiotherapy, and temozolomide (TMZ). Recent evidence links hyperglycemia to cancer progression, and altered glucose metabolism has emerged as a key factor in GBM development. Metformin, an antidiabetic drug, has shown promise in improving survival in GBM patients, possibly due to its ability to cross the blood-brain barrier and target metabolic pathways involved in tumor growth.

View Article and Find Full Text PDF