CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder.

Comput Biol Med

Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anticancer peptides (ACPs) key properties including bioactivity, high efficacy, low toxicity, and lack of drug resistance make them ideal candidates for cancer therapies. To deeply explore the potential of ACPs and accelerate development of cancer therapies, although 53 Artificial Intelligence supported computational predictors have been developed for ACPs and non ACPs classification but only one predictor has been developed for ACPs functional types annotations. Moreover, these predictors extract amino acids distribution patterns to transform peptides sequences into statistical vectors that are further fed to classifiers for discriminating peptides sequences and annotating peptides functional classes. Overall, these predictors remain fail in extracting diverse types of amino acids distribution patterns from peptide sequences. The paper in hand presents a unique CARE encoder that transforms peptides sequences into statistical vectors by extracting 4 different types of distribution patterns including correlation, distribution, composition, and transition. Across public benchmark dataset, proposed encoder potential is explored under two different evaluation settings namely; intrinsic and extrinsic. Extrinsic evaluation indicates that 12 different machine learning classifiers achieve superior performance with the proposed encoder as compared to 55 existing encoders. Furthermore, an intrinsic evaluation reveals that, unlike existing encoders, the proposed encoder generates more discriminative clusters for ACPs and non-ACPs classes. Across 8 public benchmark ACPs and non-ACPs classification datasets, proposed encoder and Adaboost classifier based CAPTURE predictor outperforms existing predictors with an average accuracy, recall and MCC score of 1%, 4%, and 2% respectively. In generalizeability evaluation case study, across 7 benchmark anti-microbial peptides classification datasets, CAPTURE surpasses existing predictors by an average AU-ROC of 2%. CAPTURE predictive pipeline along with label powerset method outperforms state-of-the-art ACPs functional types predictor by 5%, 5%, 5%, 6%, and 3% in terms of average accuracy, subset accuracy, precision, recall, and F1 respectively. CAPTURE web application is available at https://sds_genetic_analysis.opendfki.de/CAPTURE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108538DOI Listing

Publication Analysis

Top Keywords

proposed encoder
16
distribution patterns
12
peptides sequences
12
acps
8
cancer therapies
8
developed acps
8
acps functional
8
functional types
8
amino acids
8
acids distribution
8

Similar Publications

Allosteric proteins play a central role in biological processes and systems. Identifying the biological impact of mutations on allosteric proteins and the phenotypes they influence during disease initiation and progression presents a significant challenge. In theory, computational methods have the potential to facilitate the interpretation of genetic variants in allosteric proteins on a large scale.

View Article and Find Full Text PDF

Total hip arthroplasty (THA) is the standard surgical treatment for end-stage hip osteoarthritis, with its success dependent on precise preoperative planning, which, in turn, relies on accurate three-dimensional segmentation and reconstruction of the periarticular bone of the hip joint. However, patients with hip osteoarthritis often exhibit pathological characteristics, such as joint space narrowing, femoroacetabular impingement, osteophyte formation, and joint deformity. These changes present significant challenges for traditional manual or semi-automatic segmentation methods.

View Article and Find Full Text PDF

PM: A new prompting multi-modal model paradigm for few-shot medical image classification.

Comput Methods Programs Biomed

September 2025

Key Laboratory of Social Computing and Cognitive Intelligence (Ministry of Education), Dalian University of Technology, Dalian, 116024, China; School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China. Electronic address:

Background And Objective: Few-shot learning has emerged as a key technological solution to address challenges such as limited data and the difficulty of acquiring annotations in medical image classification. However, relying solely on a single image modality is insufficient to capture conceptual categories. Therefore, medical image classification requires a comprehensive approach to capture conceptual category information that aids in the interpretation of image content.

View Article and Find Full Text PDF

Neural Quantum Embedding via Deterministic Quantum Computation with One Qubit.

Phys Rev Lett

August 2025

Southern University of Science and Technology, Department of Physics, State Key Laboratory of Quantum Functional Materials, and Guangdong Basic Research Center of Excellence for Quantum Science, Shenzhen 518055, China.

Quantum computing is expected to provide an exponential speedup in machine learning. However, optimizing the data loading process, commonly referred to as "quantum data embedding," to maximize classification performance remains a critical challenge. In this Letter, we propose a neural quantum embedding (NQE) technique based on deterministic quantum computation with one qubit (DQC1).

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF