Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Developing flame retardant cotton fabrics (CF) is crucial for minimizing the harm caused by fires to people. To improve the flame retardancy of CF, this paper has synthesized a novel flame retardant called diboraspiro tetra phosphonate ammonium salt (N-PDBDN). The structure of N-PDBDN has been analyzed using FT-IR and NMR. Treating CF with N-PDBDN can increase the limiting oxygen index (LOI) to 36.2 % with a weight gain of 10.1 %. Moreover, even after undergoing 50 laundering cycles (LCs), the LOI remains at 27.1 %, indicating good flame retardancy and durability. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) show the presence of P and N elements on N-PDBDN treated CF, suggesting successful bonding between N-PDBDN and cellulose. Thermogravimetric analysis (TGA) results demonstrate that the addition of N-PDBDN significantly enhances the thermal stability and carbon formation ability of CF. Furthermore, cone calorimetry tests reveal reduced heat release rates (HRR), prolonged time to ignition (TTI), and 38 % lower total heat release (THR) in CF treated with N-PDBDN compared with pure cotton. Finally, a potential flame retardant mechanism involving N-PDBDN is proposed. These findings indicate that incorporating an ammonium phosphate group into CF can effectively improve the flame retardancy and durability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132330DOI Listing

Publication Analysis

Top Keywords

flame retardant
16
flame retardancy
16
thermal stability
8
cotton fabrics
8
improve flame
8
n-pdbdn
8
retardancy durability
8
heat release
8
flame
7
b/p/n flame
4

Similar Publications

To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Pollution can have lasting effects beyond the exposure period, potentially impacting multiple generations. Polybrominated diphenyl ether (PBDE) flame retardants are widespread, including in oceans, yet their multigenerational impacts remain poorly understood. We investigated whether BDE-99, a ubiquitous PBDE, induces neurobehavioral and molecular effects across generations in the fish .

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF