Publications by authors named "Kanchaka Senarath Pathirajage"

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ) functions as a nuclear transcription factor with primary roles in lipid and glucose metabolism and adipocyte differentiation. Despite intensive research in metabolic contexts, its role during early vertebrate development remains underexplored. Our study focused on understanding PPARγ's developmental role by using a PPARγ antagonist, GW-9662 (GW), in zebrafish embryos.

View Article and Find Full Text PDF

Bisphenol A (BPA) is an environmental estrogen which perturbs hormone signaling pathways adversely affecting aquatic organisms. To evaluate the impact of developmental exposure to long term yet environmentally relevant low doses of BPA, wild-type juvenile zebrafish of 35 days post fertilization were treated with BPA (1 and 10 µg/L), treatment control (0.5% v/v methanol) and control for 60 days.

View Article and Find Full Text PDF

3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis.

View Article and Find Full Text PDF