The effects of bathymetry on the long-term carbon cycle and CCD.

Proc Natl Acad Sci U S A

Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095-1567.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126914PMC
http://dx.doi.org/10.1073/pnas.2400232121DOI Listing

Publication Analysis

Top Keywords

carbon cycle
12
long-term carbon
8
ocean floor
8
bathymetry
8
riverine flux
8
carbon
5
effects bathymetry
4
bathymetry long-term
4
cycle
4
cycle ccd
4

Similar Publications

An analysis is conducted with the intention to clarify which molecules are more promising as renewable electricity storage media, taking into consideration some basic parameters like theoretical and practical voltage, theoretical energy density, etc. The central aspect of analysis is to apply sufficiently simple, but relevant criterion, the minimum cost of electricity required to produce a specific quantity of chemical energy storage medium, in relation to the prevailing market prices of the produced chemicals. Therefore, the study analyzes the cost of electrical energy needed to selectively convert CO into specific molecules such as, CO, CHOH, and CH, among others, water into hydrogen, and nitrogen into ammonia, by considering both idealized and more realistic operational conditions.

View Article and Find Full Text PDF

Interfacial Zn─O─Ti Sites for Efficient Photocatalytic Urea Synthesis from CO and N.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P.R. China.

Urea photosynthesis from CO and N has profound environmental and energy implications. However, the simultaneous activation of CO and N, along with the promotion of C─N bond formation, remains a major challenge. Herein, the asymmetric interfacial sites (Zn─O─Ti) were engineered by building oxygen atom bridges between ZIF-8 and MIL-125 to enable efficient photocatalytic urea synthesis.

View Article and Find Full Text PDF

Purpose: To quantify and compare the cost, waste, and carbon emissions of single-use and reusable phacoemulsification tubing/cassettes and knives.

Setting: Private, single-specialty ambulatory surgery center (Mountain View, CA, USA).

Design: Retrospective data review.

View Article and Find Full Text PDF

Contrasting age-dependent leaf acclimation strategies drive vegetation greening across deciduous broadleaf forests in mid- to high latitudes.

Nat Plants

September 2025

Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, School of Atmospheric Sciences, School of Ecology, Sun Yat-sen University, Zhuhai, China.

Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAI) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes.

View Article and Find Full Text PDF

Prospects for silvicultural enhancement of fire resistance in mesic westside forests of the Pacific Northwest.

PLoS One

September 2025

United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland Oregon, United States of America.

Increasing wildfire activity in mesic, temperate Pacific Northwest forests west of the Cascade Range crest has stimulated interest in understanding whether alternative forest management practices could reduce risk of stand-replacing fire. To explore how management can enhance fire resistance in these forests and assess tradeoffs among resistance enhancement, carbon sequestration and storage, and economic returns, we conducted 40-year simulations of stand development with BioSum, a framework for conducting landscape analysis with the Forest Vegetation Simulator (FVS), utilizing a statistically representative and spatially balanced sample of Forest Inventory and Analysis (FIA) plots. Simulation outcomes under business-as-usual silviculture were contrasted with fire-aware silviculture, and treatment optimization logic was developed and applied to represent landscape-scale outcomes under business-as-usual and fire-focused management scenarios.

View Article and Find Full Text PDF